Skip to main content
Log in

Solar photocatalysts from Gd–La codoped TiO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gd–La codoped TiO2 nanoparticles with diameter of 10 nm were successfully synthesized via a sol–gel method. The photocatalytic activity of the Gd–La codoped TiO2 nanoparticles evaluated by photodegrading methyl orange has been significantly enhanced compared to that of undoped or Gd or La monodoped TiO2. Ti4+ may substitute for La3+ and Gd3+ in the lattices of rare earth oxides to create abundant oxygen vacancies and surface defects for electron trapping and dye adsorption, accelerating the separation of photogenerated electron–hole pairs and methyl orange photodegradation. The formation of an excitation energy level below the conduction band of TiO2 from the binding of electrons and oxygen vacancies decreases the excitation energy of Gd–La codoped TiO2, resulting in versatile solar photocatalysts. The results suggest that Gd–La codoped TiO2 nanoparticles are promising for future solar photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu JH, Wang JL, Lin JM et al (2012) Enhancement of the photovoltaic performance of dye-sensitized solar cells by doping Y0.78Yb0.20Er0.02F3 in the photoanode. Adv Energy Mater 2:78–81

    Article  Google Scholar 

  2. Pan L, Zou JJ, Zhang XW et al (2011) Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc 133:10000–10002

    Article  Google Scholar 

  3. Gu ZJ, Yang YC, Li KY et al (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482

    Article  Google Scholar 

  4. Zhou H, Li XF, Fan TX et al (2010) Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Adv Mater 22:951–956

    Article  Google Scholar 

  5. Li XF, Fan TX, Zhou H et al (2009) Enhanced light-harvesting and photocatalytic properties in Morph-TiO2 from green leaf biotemplates. Adv Funct Mater 19:45–56

    Article  Google Scholar 

  6. Zhang GQ, Finefrock S, Liang DX et al (2011) Semiconductor nanostructure-based photovoltaic solar cells. Nanoscale 3:2430–2443

    Article  Google Scholar 

  7. Lin L, Yang YC, Men L et al (2013) A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst. Nanoscale 5:588–593

    Article  Google Scholar 

  8. Lin L, Chai YC, Yang YC et al (2013) Hierarchical Gd–La codoped TiO2 microspheres as robust photocatalysts. Int J Hydrogen Energy 38:2634–2640

    Article  Google Scholar 

  9. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  Google Scholar 

  10. Li ZX, Shi FB, Zhang T et al (2011) Ytterbium stabilized ordered mesoporous titania for near-infrared photocatalysis. Chem Commun 47:8109–8111

    Article  Google Scholar 

  11. Mohapatra P, Mishra T, Parida KM (2006) Effect of microemulsion composition on textural and photocatalytic activity of titania nanomaterial. Appl Catal A 310:183–189

    Article  Google Scholar 

  12. Naik B, Parida KM (2010) Solar light active photodegradation of phenol over a Fe x Ti1−x O2−y N y nanophotocatalyst. Ind Eng Chem Res 49:1191–1197

    Article  Google Scholar 

  13. Parida KM, Naik B (2009) Synthesis of mesoporous TiO2-xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination. J Colloid Interf Sci 333:269–276

    Article  Google Scholar 

  14. Pany S, Parida KM (2013) Facile fabrication of mesoporosity driven N-TiO2@CS nanocomposites with enhanced visible light photocatalytic activity. RSC Adv 3:4976–4984

    Article  Google Scholar 

  15. Naik B, Parida KM, Behera GC (2011) Facile synthesis of Bi2O3/TiO2−x N x nanocomposites and its direct solar light driven photocatalytic selective hydroxylation of phenol. Chem Cat Chem 3:311–318

    Google Scholar 

  16. Naik B, Parida KM, Gopinath CS (2010) Facile synthesis of N and S-incorporated nanocrystalline TiO2 and direct solar light driven photocatalytic activity. J Phys Chem C 114:19473–19482

    Article  Google Scholar 

  17. Martha S, Das DP, Biswal N, Parida KM (2012) Facile synthesis of visible light responsive V2O5/N, S-TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation. J Mater Chem 22:10695–10703

    Article  Google Scholar 

  18. Baiju KV, Periyat P, Shajesh P et al (2010) Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method. J Alloy Compd 505:194–200

    Article  Google Scholar 

  19. Anandan S, Ikuma Y, Murugesan V (2012) Photocatalytic degradation of phenolics by N-doped mesoporous titania under solar radiation. Int J Photoenergy 2012:780562

    Article  Google Scholar 

  20. Obregón S, Colón G (2012) Evidence of upconversion luminescence contribution to the improved photoactivity of erbium doped TiO2 systems. Chem Commun 48:7865–7867

    Article  Google Scholar 

  21. Romero DC, Torres GT, Arevalo JC et al (2010) Synthesis and characterization of TiO2 doping with rare earths by sol–gel method: photocatalytic activity for phenol degradation. J Sol-Gel Sci Technol 56:219–226

    Article  Google Scholar 

  22. Ricci PC, Carbonaro CM, Lehmann AG et al (2013) Structure and photoluminescence of TiO2 nanocrystals doped and co-doped with N and rare earths (Y3+, Pr3+). J Alloy Compd 561:109–113

    Article  Google Scholar 

  23. Zhang QH, Gao L, Guo JK (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B-Environ 26:207–215

    Article  Google Scholar 

  24. Jing LQ, Sun XJ, Xin BF et al (2004) The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem 177:375–3382

    Article  Google Scholar 

  25. Zhang YH, Zhang HX, Xu YX et al (2003) Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties. J Mater Chem 13:2261–2265

    Article  Google Scholar 

  26. Li FB, Li XZ, Hou MF (2004) Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control. Appl Catal B-Environ 48:185–194

    Article  Google Scholar 

  27. Reddy BM, Chowdhury B, Smirniotis PG (2001) An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts. Appl Catal A 210:53–60

    Article  Google Scholar 

  28. Cacciotti I, Bianco A, Pezzotti G et al (2011) Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers. Chem Eng J 166:751–764

    Article  Google Scholar 

  29. Yang CH, Ma ZQ, Li F et al (2010) Spectrum analysis on phase transformations in TiO2 thin films. Acta Phys Chim Sin 26:1349–1354

    Google Scholar 

  30. Kortum G (1969) Reflectance Spectroscopy. Springer, Berlin

    Book  Google Scholar 

  31. Wodka D, Bielanska E, Socha RP et al (2010) Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl Mater Interfaces 2:1945–1953

    Article  Google Scholar 

  32. Setiawati E, Kawano K (2008) Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2. J Alloy Compd 451:293–296

    Article  Google Scholar 

  33. Anson-Casaos A, Tacchini I, Unzue A et al (2013) Combined modification of a TiO2 photocatalyst with two different carbon forms. Appl Surf Sci 270:675–684

    Article  Google Scholar 

  34. Grover IS, Singh S, Pai B (2013) The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes. Appl Surf Sci 280:366–372

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ocean University of China for providing Seed Fund to this project, and Fundamental Research Funds for the Central Universities (201313001, 201312005), Shandong Province Outstanding Youth Scientist Foundation Plan (BS2013CL015), Doctoral Fund of Ministry of Education of China (20130132120023), Shandong Provincial Natural Science Foundation (ZR2011BQ017), and Research Project for the Application Foundation in Qingdao (13-1-4-198-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunwei Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Cai, H., Tang, Q. et al. Solar photocatalysts from Gd–La codoped TiO2 nanoparticles. J Mater Sci 49, 3371–3378 (2014). https://doi.org/10.1007/s10853-014-8045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8045-2

Keywords

Navigation