Skip to main content
Log in

Inertial stabilization of flexible polymer micro-lattice materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Soft micro-lattice materials with different lattice geometries were fabricated using a self-propagating photopolymer waveguide process. The parent polymer was characterized by dynamic mechanical analysis and the glass transition temperature shifted with equivalent strain rate. Quasi-static and dynamic compression tests were subsequently carried out to investigate the inertial stabilization of lattice member buckling as a function of strain rate and structural geometry (e.g. relative density and lattice aspect ratio). A high-speed digital camera was used to record the progression of deformation and failure events during compression. The micro-lattice structures exhibited super compressibility and increased strength. The observed strength increase, particularly for high aspect ratio and high strain rate, was attributed to inertial stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG (2001) Prog Mater Sci 46(3–4):309

    Article  CAS  Google Scholar 

  2. Wang J, Evans AG, Dharmasena K, Wadley HNG (2003) Int J Solids Struct 40(25):6981

    Article  Google Scholar 

  3. Chiras S, Mumm DR, Evans AG, Wicks N, Hutchinson JW, Dharmasena K, Wadley HNG, Fichter S (2002) Int J Solids Struct 39(15):4093

    Article  Google Scholar 

  4. Rathbun HJ, Wei Z, He MY, Zok FW, Evans AG, Sypeck DJ, Wadley HNG (2004) J Appl Mech 71(3):368

    Article  Google Scholar 

  5. Kooistra GW, Deshpande VS, Wadley HNG (2004) Acta Mater 52(14):4229

    Article  CAS  Google Scholar 

  6. Queheillalt DT, Wadley HNG (2005) Mater Sci Eng A 397(1–2):132

    Google Scholar 

  7. Bele E, Bouwhuis BA, Hibbard GD (2008) Mater Sci Eng A 489(1–2):29

    Google Scholar 

  8. Wadley HNG (2006) Philos Trans R Soc A 364(1838):31

    Article  CAS  Google Scholar 

  9. Wadley HNG (2002) Adv Eng Mater 4(10):726

    Article  CAS  Google Scholar 

  10. Wadley HNG, Fleck NA, Evans AG (2003) Compos Sci Technol 63(16):2331

    Article  CAS  Google Scholar 

  11. Steeves CA, He MY, Kasen SD, Valdevit L, Wadley HNG, Evans AG (2009) J Appl Mech 76(3):9

    Google Scholar 

  12. Valdevit L, Vermaak N, Zok FW, Evans AG (2008) J Appl Mech 75(6):061022

    Article  Google Scholar 

  13. Bouwhuis B, Bele E, Hibbard G (2008) J Mater Sci 43(9):3267. doi:10.1007/s10853-008-2529-x

    Article  CAS  Google Scholar 

  14. Yin S, Wu L, Ma L, Nutt S (2012) Composites Part B 43(4):1749

    Article  Google Scholar 

  15. Yin S, Wu L, Ma L, Nutt S (2011) Compos Struct 93(12):3104

    Article  Google Scholar 

  16. Sharp DN, Campbell M, Dedman ER, Harrison MT, Denning RG, Turberfield AJ (2002) Opt Quantum Electron 34(1–3):3

    Article  CAS  Google Scholar 

  17. Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, Perry JW (2007) Opt Express 15(6):3426

    Article  CAS  Google Scholar 

  18. Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Adv Mater 19(22):3892

    Article  CAS  Google Scholar 

  19. Jacobsen AJ, Barvosa-Carter W, Nutt S (2007) Acta Mater 55(20):6724

    Article  CAS  Google Scholar 

  20. Jacobsen AJ, Barvosa-Carter W, Nutt S (2008) Acta Mater 56(6):1209

    Article  CAS  Google Scholar 

  21. Sarva SS, Deschanel S, Boyce MC, Chen W (2007) Polymer 48(8):2208

    Article  CAS  Google Scholar 

  22. Yi J, Boyce MC, Lee GF, Balizer E (2006) Polymer 47(1):319

    Article  CAS  Google Scholar 

  23. McShane GJ, Stewart C, Aronson MT, Wadley HNG, Fleck NA, Deshpande VS (2008) Int J Solids Struct 45(16):4407

    Article  CAS  Google Scholar 

  24. Park S, Russell BP, Deshpande VS, Fleck NA (2012) Composites Part A 43(3):527

    Article  CAS  Google Scholar 

  25. Song B, Chen WW, Dou S, Winfree NA, Kang JH (2005) Int J Impact Eng 31(5):509

    Article  Google Scholar 

  26. Kazemahvazi S, Russell BP, Zenkert D (2012) Compos Struct 94(11):3300

    Article  Google Scholar 

  27. Xue Z, Hutchinson JW (2006) Int J Numer Methods Eng 65(13):2221

    Article  Google Scholar 

  28. Vaziri A, Xue ZY (2007) J Mech Mater Struct 2(9):1743

    Article  Google Scholar 

  29. Vaziri A, Xue ZY, Hutchinson JW (2007) J Mech Mater Struct 2(10):1947

    Article  Google Scholar 

  30. Hou B, Zhao H, Pattofatto S, Liu JG, Li YL (2012) Int J Solids Struct 49(19–20):2754

    Article  CAS  Google Scholar 

  31. Tang X, Prakash V, Lewandowski JJ, Koolstra GW, Wadley HNG (2007) Acta Mater 55(8):2829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Nutt acknowledges support from the Mc. Gill Composites Center. L.Z. Wu would like to thank the Major State Basic Research Development Program of China (973 Program, No. 2011CB610303). S. Yin gratefully acknowledges the support from China Scholarship Council (CSC) during the visit at University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, S., Jacobsen, A.J., Wu, L. et al. Inertial stabilization of flexible polymer micro-lattice materials. J Mater Sci 48, 6558–6566 (2013). https://doi.org/10.1007/s10853-013-7452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7452-0

Keywords

Navigation