Skip to main content
Log in

Understanding damage in polymer-bonded explosive composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymer matrix particulate composites comprise the majority of solid-phase high explosives, and most show considerable deterioration in mechanical properties when damaged. We have quantified this effect in three RDX–HTPB composites by measuring four damage metrics; the change in compressive strength, modulus, thermal conductivity and porosity, with increasing impact strain (the causal metric). This approach was applied to three RDX–HTPB composites containing (a) coarse, (b) fine and (c) both coarse and fine particles. Damage was applied by compression to predetermined levels of strain at strain-rates of the order of 10s−1. All three materials exhibited deterioration in strength and storage modulus, but only the composites containing coarse particles showed significant changes in porosity or thermal conductivity with increasing specific impact energy. This is because the fine-particle composites mask internal damage by recovering their initial form, the resultant cracks are closed, whereas the coarse particles underwent grain reorientation when impacted and are left open. This last point highlights the difference between active and passive assessments of damage since the former do not change the density or thermal conductivity of the material. The deterioration of secant modulus that results from damage can also be predicted using a simple energy-activation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hagan JT, Chaudhri MM (1977) J Mater Sci 12(5):1055. doi:10.1007/BF00540993

    Article  Google Scholar 

  2. Banerjee B, Adams DO (2003) Physica B 338:8

    Article  Google Scholar 

  3. Akhavan J (1998) The chemistry of explosives. The Royal Society of Chemistry, Cambridge

  4. Idar DJ, Peterson PD, Scott PD, Funk DJ (1997) in: AIP conference proceedings, p 587

  5. Williamson DM, Siviour CR, Proud WG, Palmer SJP, Govier RK, Ellis K, Blackwell P, Leppard C (2008) J Phys D 41(8):085404

    Article  Google Scholar 

  6. Palmer SJP, Field JE, Huntley JM (1993) Proc R Soc Lond Ser A 440:399

    Article  Google Scholar 

  7. Teipel U (2005) Energetic materials. Wiley-VCH, Weinheim

  8. Hoge KF (1967) J. Appl Polym Sci 5:19

  9. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Article  Google Scholar 

  10. Siviour CR, Walley SM, Proud WG, Field JE (2005) Polymer 46(26):12546

    Article  Google Scholar 

  11. Drodge DR, Williamson DM, Palmer SJP, Proud WG, Govier RK (2010) J Phys D 43(33):335403

    Article  Google Scholar 

  12. Field JE, Walley SM, Proud WG, Goldrein HT, Siviour CR (2004) Int J Impact Eng 30(7):725

    Article  Google Scholar 

  13. Williamson DM, Palmer SJP, Proud WG (2007). In: Shock compression of condensed matter, p 803

  14. Rae PJ, Goldrein HT, Palmer SJP, Field JE, Lewis AL (2002) Proc R Soc Lond Ser A 458:743

    Article  Google Scholar 

  15. Field JE (1992) Acc Chem Res 25:489

    Article  Google Scholar 

  16. Asay BW, Son SF, Bdzil JB (1996) Inter J Multiph Flow 22(5):923

    Article  Google Scholar 

  17. Berghout HL, Son SF, Asay BW (2000) Proc Combust Inst 28(1):911

    Article  Google Scholar 

  18. Berghout HL, Son SF, Skidmore CB, Idar DJ, Asay BW (2002) Thermochim Acta 384(1–2):261

    Article  Google Scholar 

  19. Berghout HL, Son SF, Hill LG, Asay BW (2006) J Appl Phys 99(11):114901

    Article  Google Scholar 

  20. Gray III GT, Blumethal WR, Idar DJ, Cady CM (1997). In: Shock compression of condensed matter, p 583

  21. Williamson DM, Palmer SJP, Proud WG, Govier RK (2009). In: Shock compression of condensed matter

  22. Wiegand D, Reddingius B (2003). In: Shock compression of condensed matter, p 812

  23. Grantham SG, Siviour CR, Proud WG, Field JE (2004) Meas Sci Technol 15(9):1867

    Article  Google Scholar 

  24. Balzer JE, Siviour CR, Walley SM, Proud WG, Field JE (2004) Proc R Soc Lond Ser A 460:781

    Article  Google Scholar 

  25. Siviour CR, Gifford MJ, Walley SM, Proud WG, Field JE (2004) J Mater Sci 39:1255. doi:10.1016/j.jhazmat.2008.09.021

    Article  Google Scholar 

  26. Siviour CR, Laity PR, Proud WG, Field JE, Porter D, Church PD, Gould PJ, Huntingdon-Thresher W (2008) Proc R Soc Lond Ser A 464(2093):1229

    Article  Google Scholar 

  27. Drodge DR, Proud WG (2009) Inst Phys Conf Ser 1195:1381

    Google Scholar 

  28. Cox K (2008) QinetiQ Fort Halstead, Sevenoaks

  29. Stock SR (2008) Int Mater Rev 53:129

    Article  Google Scholar 

  30. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Biophoton Int 36

    Google Scholar 

  31. Drodge DR, Chapman DJ, Proud WG (2009). In: Shock compression of condensed matter, vol 1195, p 1249

  32. Davies RM (1948) Proc R Soc Lond Ser A 240(821):375

    Google Scholar 

  33. Volterra E (1948) Alcuni risultati di prove dinamiche sui materiali, La Rivista Del Nuovo Cimento, vol 4. p 1

  34. Gray III GT (2000) Classic Split Hopkinson Bar Testing, In: ASM handbook—mechanical testing and evaluation, vol 8. ASM International, Russell, p 463

  35. Pope PH, Field JE (1984) J Phys E 17:817

    Article  Google Scholar 

  36. Gustafsson SE (1991) Rev Sci Instrum 62(March):797

    Article  Google Scholar 

  37. Mulliken AD, Boyce MC (2006) Int J Sol Struct 43:1331

    Article  Google Scholar 

  38. Gent AN (1980) J Mater Sci 15(11):2884. doi:10.1007/BF00550559

    Article  Google Scholar 

  39. Nielsen LE (1994) Mechanical properties of polymers and composites, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  40. Halpin JC, Kardos JL (1976) Polym Eng Sci 16(5):344

    Article  Google Scholar 

  41. Mori T, Tanaka K (1973) Acta Metall 21:571

    Article  Google Scholar 

  42. Schwarz RB, Hooks DE, Dick JJ, Archuleta JI, Martinez AR (2005) J Appl Phys 98:056106

    Article  Google Scholar 

  43. Porter D (1995) Group interaction modelling of polymer properties. CRC Press, Boca Raton

    Google Scholar 

  44. Porter D, Gould PJ (2006) J Phys IV Fr 134:373

    Article  Google Scholar 

  45. Leblanc J (2002) Prog Polym Sci 27:627

    Article  Google Scholar 

  46. Bailey A, Bellerby JM, Kinloch SA, Sharma J, Baughan EC, Chaudhri MM, Sherwood JN, Beard BC (1992) Philos Trans R Soc A 339(1654):321

  47. Sedighiamiri A, Van Erp TB, Peters GWM, Govaert LE, van Dommelen JAW (2010) J Polym Sci B 48(20):2173

    Article  Google Scholar 

  48. Yeager JD, Dubey M, Wolverton MJ, Jablin MS, Majewski J, Bahr DF, Hooks DE (2011) Polymer 52(17):3762

    Article  Google Scholar 

  49. Cornish R, Porter D, Church PD, Gould PJ, Andrews T, Proud WG, Drodge DR, Siviour CR (2007) In: APS meeting, p 777

  50. Chen F, Porter D, Vollrath F (2010) Phys Rev E 82(4):1

    Google Scholar 

Download references

Acknowledgements

P.J. Gould, P.D. Church and I.G. Cullis of QinetiQ Fort Halstead are thanked for their significant contributions to this research. This research was performed as part of the UK-Energetics HAZARD research programme, funded by the Defence Technology and Innovation Centre, UK MoD. W.G Proud of Imperial College London is thanked for overseeing the initial Cavendish Laboratory research. We are grateful to R. Cornell of the Department of Materials Science and Metallurgy and A. Heaver at the Department of Engineering at the University of Cambridge for carrying out thermal measurements and X-ray tomography, respectively. We also thank staff at the Cavendish Laboratory Mott Workshop for their assistance, and to K. Cox of QinetiQ for producing the formulations. D.M. Williamson would like to thank AWE Aldermaston for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Williamson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drodge, D.R., Williamson, D.M. Understanding damage in polymer-bonded explosive composites. J Mater Sci 51, 668–679 (2016). https://doi.org/10.1007/s10853-013-7378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7378-6

Keywords

Navigation