Skip to main content
Log in

Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article describes the preparation of thin films of conjugated polymers which can enhance their specific electrical conductivity by several orders of magnitude by changing their state from insulating to conducting materials. The examined polymers, i.e., a polyacetylenic and a polythiophenic derivative, are functionalized with thioalkylic side chains and are soluble in common organic solvents from which they lead to thick homogeneous films. The films can be deposited on different substrates, either rigid or flexible, and can be easily exposed to laser radiation to make them conductive. The process is irreversible, and the final conductivity is stable over time, even in the presence of high temperatures (up to 180 °C), moisture, and air. The high stability of treated samples, easy polymer synthesis and quick and inexpensive suitably tailored laser tracing procedure make these materials very promising for applications in organic electronics and in the development of new electronic circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Gunes S, Neugebauer H, Sariciftci NS (2007) Chem Rev 107:1324

    Article  Google Scholar 

  2. Murphy AR, Frèchet JMJ (2007) Chem Rev 107:1066

    Article  CAS  Google Scholar 

  3. Li G, Shrotiya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  CAS  Google Scholar 

  4. Novak BM, Hegen E, Visnanathan A, Magde L (1990) Polym Prepr 31:482

    CAS  Google Scholar 

  5. Gorman CB, Biebuyck HA, Whitesides GM (1995) Chem Mater 7:526

    Article  CAS  Google Scholar 

  6. Bargon J, Baumann R, Boeker P (1992) Proc SPIE 1672:441

    Article  CAS  Google Scholar 

  7. Roth HK, Eidner K, Roth H (1996) Circ World 22:19

    Article  Google Scholar 

  8. Roth HK, Gruber H, Fanghaenel E, Richter AM, Hoerig W (1990) Synth Met 37:151

    Article  CAS  Google Scholar 

  9. Srinivasan R, Hall RR, Wilson WD, Loehle WD, Allbee DC (1994) Synth Met 66:301

    Article  CAS  Google Scholar 

  10. Decker C (1987) J Polym Sci Polym Lett 25:253

    Google Scholar 

  11. Roth HK, Baumann R, Bargon J, Schroedner M (1991) Progr Colloid Polym Sci 85:157

    Article  CAS  Google Scholar 

  12. Richter AM, Richter JJM, Beye N, Fanghaenel E (1987) J Prakt Chem 329:811

    Article  CAS  Google Scholar 

  13. Okano Y, Masuda T, Hagashimura T (1982) Polymer J 14:477

    Article  CAS  Google Scholar 

  14. Richter AM, Laube U, Moniak F, Fanghaenel E, Hempel G, Goldenberg S, Scheler G (1991) Acta Polym 42:615

    Article  CAS  Google Scholar 

  15. Tobjork D, Kaihovirta NJ, Makela T, Pettersson FS, Osterbacka R (2008) Org Electron 9:931

    Article  CAS  Google Scholar 

  16. Youn H, Jeon K, Shin S, Yang M (2012) Org Electron 13:1470

    Article  CAS  Google Scholar 

  17. Aernouts T, Aleksandrov T, Girotto C, Genol J, Poortmans J (2008) J Appl Phys Lett 92:033306

    Article  Google Scholar 

  18. Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Nano Lett 8:2806

    Article  CAS  Google Scholar 

  19. Jeong JA, Kim HK (2010) Curr Appl Phys 10:e105

    Article  Google Scholar 

  20. Jeong JA, Kim J, Kim HK (2011) Sol Energy Mater Sol Cells 95:1974

    Article  CAS  Google Scholar 

  21. Schaferling M, Bauerle P (2004) J Mater Chem 14:1132

    Article  Google Scholar 

  22. Su YW, Chelan S, Wei KH (2012) Mater Today 15:554

    Article  CAS  Google Scholar 

  23. Krebs FC, Norrman K (2010) Appl Mater Interfaces 2:877

    Article  CAS  Google Scholar 

  24. Krebs FC (2009) Sol Energy Mater Sol Cells 93:394

    Article  CAS  Google Scholar 

  25. Sondergaard RR, Hosel M, Krebs FC (2013) J Polym Sci B 51:16

    Article  CAS  Google Scholar 

  26. Hubler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingeback M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Adv Energy Mater 1:1018

    Article  Google Scholar 

  27. Kopola P, Aernouts T, Sliz R, Guillerez S, Yikunnari M, Cheyns D, Valimaki M, Tuomikoski M, Hast J, Jabbour G, Myllyla R, Maaninen A (2011) Sol Energy Mater Sol Cells 95:1344

    Article  CAS  Google Scholar 

  28. Hambsch M, Reuter K, Stanel M, Schmidt G, Kempa H, Fugmann U, Hahn U, Hubler AC (2010) Mater Sci Eng B 170:93

    Article  CAS  Google Scholar 

  29. Kim A, Lee H, Lee J, Cho SM, Chae H (2011) J Nanosci Nanotechnol 11:546

    Article  CAS  Google Scholar 

  30. Hubler AC, Bellmann M, Schmidt GC, Zimmermann S, Gerlach A, Haentjes C (2012) Org Electron 13:2290

    Article  Google Scholar 

  31. Krebs FC, Tromholt T, Jorgensen M (2010) Nanoscale 2:873

    Article  CAS  Google Scholar 

  32. Angmo D, Hosel M, Krebs FC (2012) Sol Energy Mater Sol Cells 107:329

    Article  CAS  Google Scholar 

  33. Sandstrom A, Dam HF, Krebs FC, Edman L (2012) Nat Commun 3:1002

    Article  Google Scholar 

  34. Jensen J, Dam HF, Reynolds JR, Dyer AL, Krebs FC (2012) J Polym Sci B 50:536

    Article  CAS  Google Scholar 

  35. Galagan Y, Andriessen R, Rubingh E, Grossiord N, Blom P, Veenstra S, Verhees W, Kroon J (2010) LOPE-C 88 (ISBN 978-3-00-029955-1)

  36. Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, Lim HS, Lee J, Lee SH (2009) Org Electron 10:536

    Article  CAS  Google Scholar 

  37. Kwon JT, Ean SH, Moon BS, Shin JK, Kim KS, Lee SH, Lee YS (2012) Bull Korean Chem Soc 33:464

    Article  CAS  Google Scholar 

  38. Girotto C, Rand BP, Steudel S, Genoe J, Heremans P (2009) Org Electron 10:735

    Article  CAS  Google Scholar 

  39. Yu BK, Vak D, Jo J, Na SI, Kim SS, Kim MK, Kim DY (2010) IEEE J Sel Top Quantum Electron 16:1838

    Article  CAS  Google Scholar 

  40. Tedde SF, Kern J, Sterzi T, Furst J, Lugli P, Hayden O (2009) Nano Lett 9:980

    Article  CAS  Google Scholar 

  41. Beaujuge PM, Ellinger S, Reynolds JR (2008) Adv Mater 20:2772

    Article  CAS  Google Scholar 

  42. Helgesen M, Carlé JE, Andreasen B, Hoesel M, Norrman K, Sondergaard R, Krebs FC (2012) Polym Chem 3:2649

    Article  CAS  Google Scholar 

  43. Bargon J, Baumann R (1993) Micro Electronic Engineering 20:55

    Article  CAS  Google Scholar 

  44. Baumann R, Kulish U, Schroedner M, Roth HK, Sebastian D, Bargon J (1993) Synth Met 55–56:3643

    Article  Google Scholar 

  45. Bellamy LJ (1975) In: The infra-red spectra of complex molecules. Chapman and Hall, London, p. 395 ff

  46. Nyquist RA (2001) In: Interpreting infrared Raman and NMR spectra. Academic Press, London

  47. Lee JM, Lee SJ, Jung YJ, Kim JH (2008) Curr Appl Phys 8:659

    Article  Google Scholar 

  48. Costa-Bizzarri P, Della-Casa C, Lanzi M, Bertinelli F, Iarossi D, Mucci A, Schenetti L (1999) Synth Met 104:1

    Article  CAS  Google Scholar 

  49. Folli U, Iarossi D, Montorsi M, Mucci A, Schenetti L (1995) J Chem Soc Perkin Trans 1:537

    Article  Google Scholar 

  50. Bertinelli F, Costa Bizzarri P, Della Casa C, Lanzi M (2002) Spectrochim Acta A 58:583

    Article  CAS  Google Scholar 

  51. Lanzi M, Costa-Bizzarri P, Della-Casa C (1997) Synth Met 89:181

    Article  CAS  Google Scholar 

  52. Goldoni F, Iarossi D, Mucci A, Schenetti L, Zambianchi M (1997) J Mater Chem 7:593

    Article  CAS  Google Scholar 

  53. Fraleoni-Morgera A, Della-Casa C, Costa-Bizzarri P, Lanzi M, Missiroli A (2005) Macromolecules 38:3170

    Article  CAS  Google Scholar 

  54. Costa-Bizzarri P, Andreani F, Della-Casa C, Lanzi M, Salatelli E (1995) Synth Met 75:141

    Article  CAS  Google Scholar 

  55. Roncali J (1992) Chem Rev 92:711

    Article  CAS  Google Scholar 

  56. Lowe RS, Ewbank PC, Lin J, Zhai L, McCullough RD (2001) Macromolecules 34:4324

    Article  Google Scholar 

  57. Folli U, Goldoni F, Iarossi D, Mucci A, Schenetti L (1996) J Chem Res 69:0552

    Google Scholar 

  58. Cagnoli R, Mucci A, Parenti F, Schenetti L, Borsari M, Lodi A, Ponterini G (2006) Polymer 47:775

    Article  CAS  Google Scholar 

  59. Goldoni F, Iarossi D, Mucci A, Schenetti L, Costa-Bizzarri P, Della-Casa C, Lanzi M (1997) Polymer 38:1297

    Article  CAS  Google Scholar 

  60. Mucci A, Schenetti L (1995) Macromol Chem Phys 196:2687

    Article  CAS  Google Scholar 

  61. Atta Ur-R (ed) (2002) New advances in analytical chemistry, vol. 3. Taylor & Francis, London, pp 1–40

  62. Lanzi M, Costa Bizzarri P, Paganin L, Cesari G (2007) Eur Polym J 43:72

    Article  CAS  Google Scholar 

  63. Transistor. Teoria e applicazioni. Philips semiconduttori, Milan, Italy, 1965

Download references

Acknowledgements

This study was supported by University of Bologna-Funds for selected research topics 2012 and by Felsilab Srl, Bologna, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Lanzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzi, M., Di-Nicola, F.P., Livi, M. et al. Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing. J Mater Sci 48, 3877–3893 (2013). https://doi.org/10.1007/s10853-013-7204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7204-1

Keywords

Navigation