Skip to main content
Log in

A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composite anodes of Si nanoparticles (SiNPs) and reduced graphene oxide (RGO) sheets with highly dispersed SiNPs were synthesized to investigate the performance-related improvements that particle dispersion can impart. Three composites with varying degrees of particle dispersions were prepared using different ultrasonication, and a combination of ultrasonication and surfactant. With more dispersed SiNPs, the capacity retention and rate performance as evaluated by galvanostatic cycling using increasing current density rates (500–2500 mA/g) also improved compared with anodes that have poor particle dispersion. These results demonstrate that better nanoparticle dispersion (small clusters to mono-dispersed particles) between the stable and the highly conducting RGO layers, allows the carbonaceous matrix material to complement the SiNP-Li+ electrochemistry by becoming highly involved in the charge–discharge reaction mechanisms as indicated by chronopotentiometry and cyclic voltammetry (CV). Particle dispersion improvement was confirmed to be a key component in a composite anode design to maximize Si for high-performance lithium ion battery (LIB) application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  2. Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7(5):A93

    Article  CAS  Google Scholar 

  3. Graetz J, Ahn CC, Yazami R, Fultz B (2003) Electrochem Solid State Lett 6(9):A194

    Article  CAS  Google Scholar 

  4. Maranchi JP, Hepp AF, Kumta PN (2003) Electrochem Solid State Lett 6(9):A198

    Article  CAS  Google Scholar 

  5. Bourderau S, Brousse T, Scheich DM (1999) J Power Sources 81–82:233

    Article  Google Scholar 

  6. Kulova TL, Skundin AM, Pleskov YV, Terukov EI, Kon’kov OI (2007) J Electroanal Chem 600(1):217

    Article  CAS  Google Scholar 

  7. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31

    Article  CAS  Google Scholar 

  8. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) J Power Sources 189:34

    Article  CAS  Google Scholar 

  9. Peng K, Jie J, Zhang W, Lee ST (2008) Appl Phys Lett 93:0331051

    Google Scholar 

  10. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Nano Lett 9(11):3844

    Article  CAS  Google Scholar 

  11. Kim H, Han B, Choo J, Cho J (2008) Angew Chem Int Ed 47:10151

    Article  CAS  Google Scholar 

  12. Shin HC, Corno JA, Gole JL, Liu M (2005) J Power Sources 139(1–2):314

    Article  CAS  Google Scholar 

  13. Kang DK, Corno JA, Gole JL, Shin HC (2008) J Electrochem Soc 155(4):A276

    Article  CAS  Google Scholar 

  14. Kim H, Seo M, Park MH, Cho J (2010) Angew Chem 122:2192

    Article  Google Scholar 

  15. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Chem Comm 46:2025

    Article  CAS  Google Scholar 

  16. Xiang H, Zhang K, Lee JY, Zou C, Chen X, Wu J (2011) Carbon 49:1787

    Article  CAS  Google Scholar 

  17. Chou SL, Wang JZ, Choucair M, Liu HK, Stride JA, Dou SX (2010) Electrochem Comm 12:303

    Article  CAS  Google Scholar 

  18. Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) Nano Lett 12(6):3315

    Article  CAS  Google Scholar 

  19. Jeong HM, Lee SY, Shin WH, Kwon JH, Shakoor A, Hwang TH, Kim SY, Kong BS, Seo JS, Lee YM, Kang JK, Choi JW (2012) RSC Adv 2:4311

    Article  CAS  Google Scholar 

  20. Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) ACS Appl Mater Interfaces 4:2824

    Article  CAS  Google Scholar 

  21. Hwang TH, Lee YM, Kong BS, Seo JK, Choi JW (2012) Nano Lett 12:802

    Article  CAS  Google Scholar 

  22. Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) J Power Sources 206:267

    Article  CAS  Google Scholar 

  23. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) Nat Nanotechnol 3:563

    Article  CAS  Google Scholar 

  24. Banhart F, Ajayan PM (1996) Nature 382:433

    Article  CAS  Google Scholar 

  25. Park MH, Kim K, Kim J, Cho J (2010) Adv Mater 22(3):415

    Article  CAS  Google Scholar 

  26. Dimitrijevic BJ, Aifantis KE, Hackl K (2012) J Power Sources 206:343

    Article  CAS  Google Scholar 

  27. Iwamura S, Nishihara H, Kyotani T (2012) J Phys Chem C 116:6004

    Article  CAS  Google Scholar 

  28. Aifantis KE, Haycock M, Sanders P, Hackney SA (2012) Mater Sci Eng, A 529:55

    Google Scholar 

  29. Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo YJ, Pei N (2000) Solid State Ionics 135:181

    Article  CAS  Google Scholar 

  30. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  31. Guyomard D, Tarascon JM (1992) J Electrochem Soc 139(4):937

    Article  CAS  Google Scholar 

  32. Yoo EJ, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Nano Lett 8(8):2277

    Article  CAS  Google Scholar 

  33. Wang G, Shen X, Yoo J, Park J (2009) Carbon 47:2049

    Article  CAS  Google Scholar 

  34. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) Carbon 49(931–936):936

    Google Scholar 

  35. Wang C, Li D, Too CO, Wallace GG (2009) Chem Mater 21(13):2604

    Article  CAS  Google Scholar 

  36. Guo P, Song HH, Chen XH (2009) Electrochem Comm 11(6):1320

    Article  CAS  Google Scholar 

  37. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Chem Mater 21:3136

    Article  CAS  Google Scholar 

  38. Kasavajjula U, Wang C, Appleby AJ (2007) J Power Sources 163:1003

    Article  CAS  Google Scholar 

  39. Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Electrochem Commun 13:822

    Article  CAS  Google Scholar 

  40. Liang S, Zhu X, Lian P, Yang W, Wang H (2011) J Solid State Chem 184:1400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Department of Energy (Grant DE-EE0002106) for this research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Simon Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Guzman, R.C., Yang, J., Cheng, M.MC. et al. A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance. J Mater Sci 48, 4823–4833 (2013). https://doi.org/10.1007/s10853-012-7094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7094-7

Keywords

Navigation