Skip to main content

Advertisement

Log in

Electrical charge conductivity behavior of electrodeposited Cu2O/ZnO heterojunction thin films on PET flexible substrates by impedance spectroscopy analysis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The bottom-up self-assembly Cu2O/ZnO heterojunction thin films electrodeposited on indium tin oxide flexible substrate (polyethylene terephthalate, PET) have been investigated by impedance spectroscopy. It is used to study the electric conductivity of the Cu2O/ZnO heterojunction thin films combined electric modulus and impedance plots. The electric modulus and impedance as a function of the frequency analysis show the distribution of the relaxation times due to the hopping of charge carriers among defects in the Cu2O/ZnO heterojunction thin films. The values of activation energies derived from the electric modulus and impedance are found to be 0.42 and 0.40 eV, respectively, which is close to the activation energy (0.28 eV) of dc electrical conductivity and activation energy of ac conductivity (0.45–0.14 eV at the range of 100 Hz–1 MHz) in the temperature range over 303–423 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanaka H, Shimakawa T, Miyata T, Sato H, Minami T (2004) Thin Solid Films 469–470:80

    Article  Google Scholar 

  2. Yi GC, Wang C, Park W (2005) Semicond Sci Technol 20:522

    Article  Google Scholar 

  3. Brandt M, Wenchstern H, Stölzel M, Hochmuch H, Lorenz M, Grundmann M (2011) Semicond Sci Technol 26:014040

    Article  Google Scholar 

  4. Guo HH, Lin ZH, Feng ZF, Lin LL, Zhou JZ (2009) J Phys Chem C 113:12546

    Article  CAS  Google Scholar 

  5. Gao SY, Zheng HJ, Deng RP, Wang XM, Sun DH, Zheng GL (2006) Appl Phys Lett 89:123125

    Article  Google Scholar 

  6. Jeong SH, Song SH, Nagaich K, Campbell SA, Aysil ES (2011) Thin Solid Films 519:6613

    Article  CAS  Google Scholar 

  7. Jeong SS, Mittiga A, Salza E, Masci A, Passerini S (2008) Electrochim Acta 53:2226

    Article  CAS  Google Scholar 

  8. Cui JB, Gibson UJ (2010) J Phys Chem C 114:6408

    Article  CAS  Google Scholar 

  9. Liu TY, Liao HC, Lin CC, Hu SH, Chen SY (2006) Langmuir 22:5804

    Article  CAS  Google Scholar 

  10. Macdonald JR (1987) Impedance spectroscopy-emphasizing solid materials and systems. Wiley-Interscience, New York

    Google Scholar 

  11. Li M, Fetiera A, Sinclair DC (2005) J Appl Phys 98:084101

    Article  Google Scholar 

  12. Zhai YC, Fan HQ, Li Q, Yan W (2012) Appl Surf Sci 258:3232

    Article  CAS  Google Scholar 

  13. Sinclair DC, West AR (1989) J Appl Phys 66:3850

    Article  CAS  Google Scholar 

  14. Prabakar K, Narayandass SK, Mangalaraj D (2003) Mater Chem Phys 78:809

    Article  CAS  Google Scholar 

  15. Singh BK, Kumar B (2010) Cryst Res Technol 45:1003

    Article  CAS  Google Scholar 

  16. Prabakar K, Narayandass SK, Mangalaraj D (2003) Mater Sci Eng B 98:225

    Article  Google Scholar 

  17. Iguchi E, Udea K, Jung WH (1996) Phys Rev B 54:17431

    Article  CAS  Google Scholar 

  18. Gerhardt R (1994) J Phys Chem Solids 55:1491

    Article  CAS  Google Scholar 

  19. Tripathi R, Kumar A, Bharti C, Sinha TP (2010) Curr Appl Phys 10:676

    Article  Google Scholar 

  20. Samuel MS, Koshy J, Chandran A, George KC (2011) Curr Appl Phys 11:1094

    Article  Google Scholar 

  21. Jonscher AK (1999) J Phys D Appl Phys 32:R57

    Article  CAS  Google Scholar 

  22. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectric Press, London

    Google Scholar 

  23. Chen RH, Yen CC, Shern CS, Fukami T (2006) Solid State Ionics 177:2857

    Article  CAS  Google Scholar 

  24. Gupta MK, Sinha N, Singh BK, Singh N, Kumar K, Kumar B (2009) Mater Lett 63:1910

    Article  CAS  Google Scholar 

  25. Kobor D, Guiffard B, Lebrun L, Hajjaji A, Guyomar D (2007) J Phys D 40:2920

    Article  CAS  Google Scholar 

  26. James AR, Priya S, Uchino K, Srinivas K, Kiran VV (2002) Jpn J Appl Phys 41:5272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation (51172187), the SPDRF (20116102130002), the Doctoral fund of Ministry of Education of China(20116102120016), 111 Program (B08040) of MOE, Xi’an Science and Technology Foundation (CX1261-2, CX1261-3, XA-AM-201003), China Postdoctoral Science Foundation(20100481360), Natural Science Foundation of Shaanxi Province (2011JM6016), Shaanxi Province Foundation for Returned Scholars, High-level start-up Funding of NWPU, Fundamental Research Foundation (NPU-FFR-JC201232) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Xu, M., Fan, H. et al. Electrical charge conductivity behavior of electrodeposited Cu2O/ZnO heterojunction thin films on PET flexible substrates by impedance spectroscopy analysis. J Mater Sci 48, 3334–3340 (2013). https://doi.org/10.1007/s10853-012-7008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7008-8

Keywords

Navigation