Skip to main content
Log in

Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructures, mechanical properties, corrosion behaviour and biocompatibility of the Mg–Zr–Ca alloys have been investigated for potential use in orthopaedic applications. The microstructures of the alloys were examined using X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The mechanical properties of Mg–Zr–Ca alloys were determined from compressive tests. The corrosion behaviour has been investigated using an immersion test and electrochemical measurement. The biocompatibility was evaluated by cell growth factor using osteoblast-like SaOS2 cell. The experimental results indicate that the hot-rolled Mg–Zr–Ca alloys exhibit much finer microstructures than the as-cast Mg–Zr–Ca alloys which show coarse microstructures. The compressive strength of the hot-rolled alloys is much higher than that of the as-cast alloys and the human bone, which would offer appropriate mechanical properties for orthopaedic applications. The corrosion resistance of the alloys can be enhanced significantly by hot-rolling process. Hot-rolled Mg–0.5Zr–1Ca alloy (wt %) exhibits the lowest corrosion rate among all alloys studied in this paper. The hot-rolled Mg–0.5Zr–1Ca and Mg–1Zr–1Ca alloys exhibit better biocompatibility than other studied alloys and possess advanced mechanical properties, corrosion resistance and biocompatibility, suggesting that they have a great potential to be good candidates for orthopaedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Long M, Rack HJ (1998) Biomaterials 19:1621

    Article  CAS  Google Scholar 

  2. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A et al (2006) Biomaterials 27:1013

    Article  CAS  Google Scholar 

  3. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728

    Article  CAS  Google Scholar 

  4. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ et al (2005) Biomaterials 26:3557

    Article  CAS  Google Scholar 

  5. Song G (2007) Corr Sci 49:1696

    Article  CAS  Google Scholar 

  6. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y (2010) Acta Biomater 6:626

    Article  CAS  Google Scholar 

  7. Zhang E, Yin D, Xu L, Yang L, Yang K (2009) Mater Sci Eng C 29:987

    Article  CAS  Google Scholar 

  8. Zhang E, Yang L (2008) Mater Sci Eng A 497:111

    Article  Google Scholar 

  9. Zhang E, He W, Dui H, Yang K (2008) Mater Sci Eng A 488:1021

    Google Scholar 

  10. Zhang E, Yang L, Xu J, Chen H (2010) Acta Biomater 6:1756

    Article  CAS  Google Scholar 

  11. Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329

    Article  CAS  Google Scholar 

  12. Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X (2008) Mater Des 29:2034

    Article  CAS  Google Scholar 

  13. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) Biomaterials 30:484

    Article  CAS  Google Scholar 

  14. Xu H, Liu JA, Xie SS (2007) Magnesium alloys fabrication and processing technology China. Metallurgical Industry Press, Beijing

    Google Scholar 

  15. Ye XY, Chen MF, Yang M, Wei J, Liu DB (2010) J Mater Sci Mater Med 21:1321

    Article  CAS  Google Scholar 

  16. Tsai MH, Chen MS, Lin LH, Lin MH, Wu CZ, Ou KL, Yu CH (2011) J Alloys Compd 21:813

    Article  Google Scholar 

  17. Li Y, Hodgson P, Wen C (2011) J Mater Sci 46:365. doi:10.1007/s10853-010-4843-3

    Article  Google Scholar 

  18. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, Bar-Shavit Z et al (1987) Cancer Res 47:496

    Google Scholar 

  19. Li Y, Wong C, Xiong J, Hodgson P, Wen C (2010) J Dent Res 89:493

    Article  CAS  Google Scholar 

  20. International organization for Standardization (1999) Biological evaluation of medical devices. ISO10993-5. ANSI/AAMI, Arlington

  21. ASM International (1992) ASM handbook 03: alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  22. Zhou Y-L, Luo D-M (2011) Mater Character 62:931

    Article  CAS  Google Scholar 

  23. Matsumoto H, Watanabe S, Hanada S (2007) J Alloys Compd 439:146

    Article  CAS  Google Scholar 

  24. Collings EW (1984) The physical metallurgy of titanium alloys. ASM International, Metals Park, OH

    Google Scholar 

  25. Cui ZX (2000) Metallography and heat treatments. Mechanical Industry Press, Beijing

    Google Scholar 

  26. ASM International Handbook Committee (1987) ASM handbook. Corrosion, vol 13. ASM International, Materials Park, OH

  27. Davis JR (2000) Corrosion understanding the basics. ASM International, Materials Park, OH

    Google Scholar 

  28. Laque FL, Copson HR (1963) Corrosion resistance of metals and alloys. Reinhold Publishing Corporation, New York

    Google Scholar 

  29. Shreir LL (1963) Corrosion, vol. 1: corrosion of metals and alloys. George Newnes Ltd, London

  30. Zhang X, Yuan G, Mao L, Niu J, Fu P, Ding W (2012) J Mech Behav Biomed Mater 7:77

    Article  CAS  Google Scholar 

  31. Alvarez-Lopez M, Pereda MD, Del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA et al (2010) Acta Biomater 6:1763

    Article  CAS  Google Scholar 

  32. Hamu GB, Eliezer D, Wagner L (2009) J Alloy Compd 468:222

    Article  Google Scholar 

  33. Liu C, Xin Y, Tang G, Chu PK (2007) Mater Sci Eng A 456:350

    Article  Google Scholar 

  34. Witte F (2010) Acta Biomater 6:1680

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the funds of the Key Scientific and Technological Projects of Guangdong Province, P. R. China (2008B010600003) and AISRF-BF030031, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Long Zhou or Yuncang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YL., Li, Y., Luo, DM. et al. Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys. J Mater Sci 48, 1632–1639 (2013). https://doi.org/10.1007/s10853-012-6920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6920-2

Keywords

Navigation