Skip to main content
Log in

First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Generic materials-related problems foreseen in connection with the operation of a fusion power plant present a major challenge for the development of magnetically confined fusion as a commercial power generation option. In this review, we focus on the predictive capabilities of first-principles-based atomistic models for radiation defects and phase stability of body-centred cubic Fe–Cr-based ferritic-martensitic and ferritic steels and tungsten alloys, which are presently under consideration as candidate structural materials for the first wall and diverter applications. Density-functional calculations predict that low-Cr iron alloys are stabilized by intra-atomic exchange, giving rise to magnetism and changes in interatomic chemical bonding. Magnetic effects are also responsible for the fact that the atomic structure of radiation defects in iron and steels is different from the structure of defects formed under irradiation in non-magnetic body-centred cubic metals, for example vanadium or tungsten. Ab initio-based magnetic cluster expansion-based Monte–Carlo simulations showed unusual non-collinear magnetic configurations forming at interfaces and around Cr precipitates in FeCr alloys. In W–Ta and W–V alloys, ab initio calculations helped to identify several low temperature ordered inter-metallic phases that are not included in the existing phase diagrams based on high-temperature experimental data. Ab initio calculations have also made it possible to predict atomic structures of point defects formed in these alloys under irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Möslang A (2008) CR Phys 9:457

    Article  Google Scholar 

  2. Dudarev SL, Boutard J-L, Lässer R, Caturla MJ, Derlet PM, Fivel M, Fu C-C, Lavrentiev MY, Malerba L, Mrovec M, Nguyen-Manh D, Nordlund K, Perlado M, Schäublin R, Van Swygenhoven H, Terentyev D, Wallenius J, Weygand D, Willaime F (2009) J Nucl Mater 1:386

    Google Scholar 

  3. Boutard J-L, Dudarev SL, Rieth M (2011) J Nucl Mater 417:1042

    Article  CAS  Google Scholar 

  4. Rieth M, Boutard JL, Dudarev SL, Ahlgren T, Antusch S, Baluc N, Barthe M-F, Becquart CS, Ciupinski L, Correia JB, Domain C, Fikar J, Fortuna E, Fu C–C, Gaganidze E, Galán TL, García-Rosales C, Gludovatz B, Greuner H, Heinola K, Holstein N, Juslin N, Koch F, Krauss W, Kurzydlowski KJ, Linke J, Linsmeier Ch, Luzginova N, Maier H, Martínez MS, Missiaen JM, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Norajitra P, Opschoor J, Pintsuk G, Pippan R, Ritz G, Romaner L, Rupp D, Schäublin R, Schlosser J, Uytdenhouwen I, van der Laan JG, Veleva L, Ventelon L, Wahlberg S, Willaime F, Wurster S, Yar MA (2011) J Nucl Mater 417:463

    Article  CAS  Google Scholar 

  5. Nguyen-Manh D, Horsfield AP, Dudarev SL (2006) Phys Rev B 73:020101

    Article  Google Scholar 

  6. Kenny SD, Horsfield AP (2009) Comput Phys Commun 180:2616

    Article  CAS  Google Scholar 

  7. Soin P, Horsfield AP, Nguyen-Manh D (2011) Comput Phys Commun 182:1350

    Article  CAS  Google Scholar 

  8. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  9. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  10. Kresse G, Hafner J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  11. Nguyen-Manh D, Dudarev SL, Horsfield AP (2007) J Nucl Mater 367:257

    Article  Google Scholar 

  12. Muzyk M, Nguyen-Manh D, Kurzydlovski KJ, Baluc NL, Dudarev SL (2011) Phys Rev B 84:104115

    Article  Google Scholar 

  13. Perdew P, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  14. Derlet PM, Nguyen-Manh D, Dudarev SL (2007) Phys Rev B 76:054107

    Article  Google Scholar 

  15. Hartwigsen, Goedecker S, Hutter J (1998) Phys Rev B 58:3641

    Article  CAS  Google Scholar 

  16. Fitzgerald SP, Nguyen-Manh D (2008) Phys Rev Lett 101:115504

    Article  CAS  Google Scholar 

  17. Ehrhart P, Jung P, Shultz H, Ullmaier H (1991) In: Ullmaier H (ed) Atomic defects in metals, Landolt–Bornstein new series, group III, vol 25. Springer, Berlin

  18. van de Walle CA (2009) CALPHAD 33:266

    Article  Google Scholar 

  19. Lavrentiev MYu, Drautz R, Nguyen-Manh D, Klaver TPC, Dudarev SL (2007) Phys Rev B 75:014208

    Article  Google Scholar 

  20. Nguyen-Manh D, Muzyk M, Kurzydłowski KJ, Baluc NL, Reith M, Dudarev SL (2011) Key Eng Mater 465:15

    Article  CAS  Google Scholar 

  21. Nguyen-Manh D, Dudarev SL (2009) Phys Rev B 80:104440

    Article  Google Scholar 

  22. Anderson PW (1963) In: Seitz F, Turnbull D (ed) Solid state physics, vol 14. Academic, New York, p 99

  23. Caroli B, Caroli C, Fredkin DR (1969) Phys Rev 178:599

    Article  CAS  Google Scholar 

  24. Kotani A, Yamazaki T (1992) Prog Theor Phys 108:117

    Article  CAS  Google Scholar 

  25. Dudarev SL, Nguyen-Manh D, Sutton AP (1997) Philos Mag. B 75:613

    Article  CAS  Google Scholar 

  26. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  27. Hasegawa H, Finnis MW, Pettifor DG (1985) J Phys F Met Phys 15:19

    Article  CAS  Google Scholar 

  28. Liu G, Nguyen-Manh D, Liu B-G, Pettifor DG (2005) Phys Rev B 71:174115

    Article  Google Scholar 

  29. Nguyen-Manh D, Vitek V, Horsfield AP (2007) Prog Mater Sci 52:255

    Article  CAS  Google Scholar 

  30. Nguyen-Manh D, Lavrentiev MY, Dudarev SL (2007) J Comp Aid Mater Des 14:159

    Article  CAS  Google Scholar 

  31. Nguyen-Manh D, Lavrentiev MYu, Dudarev SL (2008) C R Phys 9:379

    Article  CAS  Google Scholar 

  32. Nguyen-Manh D, Lavrentiev MYu, Dudarev SL (2008) Comp Mater Sci 44:1

    Article  CAS  Google Scholar 

  33. Mrovec M, Nguyen-Manh D, Elsasser C, Gumbsch P (2011) Phys Rev Lett 106:246402

    Article  CAS  Google Scholar 

  34. Lavrentiev MYu, Dudarev SL, Nguyen-Manh D (2009) J Nucl Mater 386–388:22

    Article  Google Scholar 

  35. Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Phys Rev B 81:184202

    Article  Google Scholar 

  36. Lavrentiev MYu, Mergia K, Gjoka M, Nguyen-Manh D, Apostolopoulos G, Dudarev SL (2012) J Phys Conden Mater, submitted for publication

  37. Lavrentiev MYu, Soulairol R, Chu-Chun Fu, Nguyen-Manh D, Dudarev SL (2011) Phys Rev B 84:144203

    Article  Google Scholar 

  38. Cook I (2006) Nat Mater 5:77

    Article  CAS  Google Scholar 

  39. Boutard JL, Alamo A, Lindaum R, Rieth M (2008) CR Phys 9:287

    Article  CAS  Google Scholar 

  40. Domain C, Becquart CS (2001) Phys Rev B 65:024103

    Article  Google Scholar 

  41. Fu C–C, Willaime F, Ordejon P (2004) Phys Rev Lett 92:175503

    Article  Google Scholar 

  42. Ehrhart P, Robrock KH, Schober HR (1986) In: Johnson RA, Orlov AN (eds) Physics of radiation effects in crystals. Elsevier, Amsterdam, p 63

    Google Scholar 

  43. Ackland GJ, Thetford R (1987) Philos Mag A 56:15

    Article  CAS  Google Scholar 

  44. Nguyen-Manh D, Mrovec M, Fitzgerald S (2008) Mater Trans 49:2497

    Article  CAS  Google Scholar 

  45. Neklyudov IM, Sadanov EV, Tolstolutskaja GD, Ksenofontov VA, Mazilova TI, Mikhailovskij IM (2008) Phys Rev B 78:115418

    Article  Google Scholar 

  46. Arakawa K, Ono K, Isshiki M, Mimura K, Uchikoshi M, Mori H (2007) Science 318:956

    Article  CAS  Google Scholar 

  47. Amiro T, Arakawa K, Mori H (2011) Philos Mag Lett 91:86

    Article  Google Scholar 

  48. Marinica M-C, Willaime F, Crocombette J-P (2012) Phys Rev Lett 108:025501

    Article  Google Scholar 

  49. Koyama A, Hishinuma A, Gelles DS, Klueh RL, Dietz W, Ehrlich K (1996) J Nucl Mater 233–237:138

    Article  Google Scholar 

  50. Little EA, Stow DA (1979) J Nucl Mater 87:25

    Article  CAS  Google Scholar 

  51. Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Comput Mater Sci 49:S199

    Article  Google Scholar 

  52. Chen Q, Sundman B (2001) J Ph Equilib 22:631

    CAS  Google Scholar 

  53. Weiss RJ, Tauer KJ (1956) Phys Rev 102:1490

    Article  CAS  Google Scholar 

  54. Nagender Naidu SV, Sriramamurthy AM, Vijyakumar M, Rama Rao P (1989) In: Smith JE (ed) V–W (Vanadium-Tungsten), phase diagrams of binary vanadium alloys. ASM International, Materials Park, OH, pp 313–317

    Google Scholar 

  55. Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park, OH

    Google Scholar 

  56. Scientific Group Thermodata Europe (SGTE) (2006) Binary systems from Mn–Mo to Y–Zr, Band 17, Teil 4, Landolt–Bornstein: numerical data and functional relationships in science and technology, new series. Springer, New York

  57. Singhal SC, Worrell WL (1973) Metall Trans 4:895

    Article  CAS  Google Scholar 

  58. Blum V, Zunger A (2005) Phys Rev B 72:020104

    Article  Google Scholar 

  59. Oganov AR, Chen J, Gatti C, Ma YZ, Ma YM, Glass CW, Liu Z, Yu T, Kurakevych OO, Solozhenko VL (2009) Nature (London) 457:863

    Article  CAS  Google Scholar 

  60. Kolmogorov AN, Shah S, Margine ER, Bialon AF, Hammerschmidt T, Drautz R (2010) Phys Rev Lett 105:217003

    Article  CAS  Google Scholar 

  61. Masters BC (1963) Nature (London) 200:254

    Article  Google Scholar 

  62. Masters BC (1965) Philos Mag 11:881

    Article  CAS  Google Scholar 

  63. Dudarev SL, Bullough R, Derlet PM (2008) Phys Rev Lett 100:135503

    Article  CAS  Google Scholar 

  64. Massumoto H, Kikuchi M (1971) Trans Jpn Inst Met 12:90

    Google Scholar 

  65. Muzyk M, Nguyen-Manh D, Wrobel J, Kurzydlowski KJ, Baluc NL, Dudarev SL (2012) J Nucl Mater

  66. Costa BFO, Cieslak J, Dubiel SM (2010) J Alloys Comp 492:L1

    Article  CAS  Google Scholar 

  67. Dubiel SM, Cieslak J, Sturhahn W, Sternik M, Piekarz P, Stankov S, Parlinski K (2010) Phys Rev Lett 104:155503

    Article  CAS  Google Scholar 

  68. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Berkeley

  69. Castin N, Bonny G, Terentyev D, Lavrentiev MYu, Nguyen-Manh D (2011) J Nucl Mater 417:1086

    Article  CAS  Google Scholar 

  70. Bley F (1992) Acta Metall Mater 40:1505

    Article  CAS  Google Scholar 

  71. Novy S, Pareige P, Pareige C (2009) J Nucl Mater 384:96

    Article  CAS  Google Scholar 

  72. Van der Ven A et al (2001) Phys Rev B 64:184307

    Article  Google Scholar 

  73. Van der Ven A, Ceder G (2005) Phys Rev B 71:054102

    Article  Google Scholar 

  74. Lavrentiev MYu, Nguyen-Manh D, Dudarev SL (2010) Proceedings of the Fifth International Conference “Multiscale Materials Modeling”, Freiburg, Germany, p 703

  75. Norajitra P, Buhler L, Buenaventura A, Diegele E, Fischer U, Gordeev S, Hutter E, Kruessmann R, Malang S, Orden A, Reimann G, Reimann J, Vieider G, Ward D, Wasastjerna F (2003) Conceptual design of the dual-coolant blanket within the framework of the EU power plant study (TW2-TRP-PPCS12), Final report, FZKA 6780, May 2003

Download references

Acknowledgements

This work, part-funded by the European Communities under the contract of Association between EURATOM and CCFE, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/I501045. DNM would like to thank Dr. P. Norajitra for the permission to use his DEMO design sketch in Fig. 1 from the FZKA [75].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Nguyen-Manh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Manh, D., Lavrentiev, M.Y., Muzyk, M. et al. First-principles models for phase stability and radiation defects in structural materials for future fusion power-plant applications. J Mater Sci 47, 7385–7398 (2012). https://doi.org/10.1007/s10853-012-6657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6657-y

Keywords

Navigation