Skip to main content
Log in

Grain boundary wetting in the NdFeB-based hard magnetic alloys

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since the end of 1980s, NdFeB-based hard magnetic alloys have been the materials with the highest available magnetic performance. NdFeB-based magnets are produced either by liquid-phase sintering or by melt spinning. In the present investigation, NdFeB alloys quenched after annealing in the semi-liquid state are used to study the wetting of Nd2Fe14B grain boundaries by a Nd-rich liquid phase. It is shown that a transition from partial wetting to complete wetting occurs with increasing temperature. The results are compared with the data in the literature for NdFeB-based alloys processed by liquid-phase sintering. The relation between wetting properties and magnetic performance of these alloys is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cahn JW (1977) J Chem Phys 66:3667

    CAS  Google Scholar 

  2. Ebner C, Saam WF (1977) Phys Rev Lett 38:1486

    CAS  Google Scholar 

  3. de Gennes PG (1985) Rev Mod Phys 57:827

    Google Scholar 

  4. Sullivan DE, Telo da Gama MM (1986) In: Croxton CA (ed) Fluid interfacial phenomena. Wiley, New York

    Google Scholar 

  5. Dietrich S (1988) In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 12. Academic Press, London

    Google Scholar 

  6. Schick M (1990) In: Charvolin J, Joanny J-F, Zinn-Justin J (eds) Liquids at interfaces (Les Houches Session XLVIII, 1988). Elsevier, Amsterdam

    Google Scholar 

  7. Bonn D, Ross D (2001) Rep Prog Phys 64:1085

    CAS  Google Scholar 

  8. Passerone A, Eustathopoulos N, Desré P (1977) J Less-Common Met 52:37

    CAS  Google Scholar 

  9. Passerone A, Sangiorgi R, Eustathopoulos N (1982) Scripta Metall 16:547

    CAS  Google Scholar 

  10. Rabkin EI, Shvindlerman LS, Straumal BB (1991) Int J Mod Phys B 5:2989

    Google Scholar 

  11. Eustathopoulos N (1983) Int Met Rev 28:189

    CAS  Google Scholar 

  12. Straumal BB (2003) Grain boundary phase transitions. Nauka Publishers, Moscow (in Russian)

    Google Scholar 

  13. Straumal B, Muschik T, Gust W, Predel B (1992) Acta Metall Mater 40:939

    CAS  Google Scholar 

  14. Straumal B, Molodov D, Gust W (1995) Interface Sci 3:127

    CAS  Google Scholar 

  15. Straumal B, Gust W, Watanabe T (1999) Mater Sci Forum 294–296:411

    Google Scholar 

  16. Straumal BB, Gornakova AS, Kogtenkova OA, Protasova SG, Sursaeva VG, Baretzky B (2008) Phys Rev B 78:054202

    Google Scholar 

  17. Yeh C-H, Chang L-S, Straumal BB (2011) J Mater Sci 46:1557. doi:10.1007/s10853-010-4961-y

    CAS  Google Scholar 

  18. Yeh C-H, Chang L-S, Straumal BB (2010) Mater Trans 51:1677

    CAS  Google Scholar 

  19. Gornakova AS, Straumal BB, Tsurekawa S, Chang L-S, Nekrasov AN (2009) Rev Adv Mater Sci 21:18

    CAS  Google Scholar 

  20. López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537

    Google Scholar 

  21. Protasova SG, Kogtenkova OA, Straumal BB, Zięba P, Baretzky B (2011) J Mater Sci 46:4349. doi:10.1007/s10853-011-5322-1

    CAS  Google Scholar 

  22. Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi:10.1007/s10853-009-4014-6

    CAS  Google Scholar 

  23. Straumal BB, Kogtenkova OA, Straumal AB, Kuchyeyev YuO, Baretzky B (2010) J Mater Sci 45:4271. doi:10.1007/s10853-010-4377-8

    CAS  Google Scholar 

  24. Straumal BB, Protasova SG, Mazilkin AA, Myatiev AA, Straumal PB, Schütz G, Goering E, Baretzky B (2010) J Appl Phys 108:073923

    Google Scholar 

  25. Straumal BB, Myatiev AA, Straumal PB, Mazilkin AA, Protasova SG, Goering E, Baretzky B (2010) JETP Lett 92:396

    CAS  Google Scholar 

  26. Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) J Mater Sci 46:4336. doi:10.1007/s10853-011-5304-3

    CAS  Google Scholar 

  27. Straumal BB, Mazilkin AA, Protasova SG, Myatiev AA, Straumal PB, Goering E, Baretzky B (2011) Thin Solid Films 519:1192

    Google Scholar 

  28. Dietrich S, Schick M (1985) Phys Rev B 31:4718

    CAS  Google Scholar 

  29. Saam WF, Shenoy VB (1995) J Low Temp Phys 101:225

    CAS  Google Scholar 

  30. Shenoy VB, Saam WF (1995) Phys Rev Lett 75:4086

    CAS  Google Scholar 

  31. Dietrich S, Napiorkowski M (1991) Phys Rev A 43:1861

    CAS  Google Scholar 

  32. Indekeu JO, van Leeuwen JMJ (1995) Physica C 251:290

    CAS  Google Scholar 

  33. Indekeu JO, van Leeuwen JMJ (1997) Physica A 236:114

    CAS  Google Scholar 

  34. Boulter CJ, Clarysse F (1999) Phys Rev E 60:R2472

    CAS  Google Scholar 

  35. Ragil K, Meunier J, Broseta D, Indekeu JO, Bonn D (1996) Phys Rev Lett 77:1532

    CAS  Google Scholar 

  36. Shahidzadeh N, Bonn D, Ragil K, Broseta D, Meunier J (1998) Phys Rev Lett 80:3992

    CAS  Google Scholar 

  37. Ross D, Bonn D, Meunier J (1999) Nature 400:737

    CAS  Google Scholar 

  38. Pfohl T, Riegler H (1999) Phys Rev Lett 82:783

    CAS  Google Scholar 

  39. Bertrand E, Dobbs H, Broseta D, Indekeu JO, Bonn D, Meunier J (2000) Phys Rev Lett 85:1282

    CAS  Google Scholar 

  40. Rafaï S, Bonn D, Bertrand E, Meunier J, Weiss VC, Indekeu JO (2004) Phys Rev Lett 92:245701

    Google Scholar 

  41. Rafaï S, Bonn D, Meunier J (2005) Physica A 358:97

    Google Scholar 

  42. Semenov VN, Straumal BB, Glebovsky VG, Gust W (1995) J Cryst Growth 151:180

    CAS  Google Scholar 

  43. Rabkin EI, Semenov VN, Shvindlerman LS, Straumal BB (1991) Acta Metall Mater 39:627

    CAS  Google Scholar 

  44. Noskovich OI, Rabkin EI, Semenov VN, Straumal BB, Shvindlerman LS (1991) Acta Metall Mater 39:3091

    CAS  Google Scholar 

  45. Straumal BB, Noskovich OI, Semenov VN, Shvindlerman LS, Gust W, Predel B (1992) Acta Metall Mater 40:795

    CAS  Google Scholar 

  46. Chang L-S, Rabkin E, Straumal BB, Baretzky B, Gust W (1999) Acta Mater 47:4041

    CAS  Google Scholar 

  47. Chang L-S, Rabkin E, Straumal BB, Hoffmann S, Baretzky B, Gust W (1998) Def Diff Forum 156:135

    CAS  Google Scholar 

  48. Schölhammer J, Baretzky B, Gust W, Mittemeijer E, Straumal B (2001) Interface Sci 9:43

    Google Scholar 

  49. Straumal BB, Mazilkin AA, Kogtenkova OA, Protasova SG, Baretzky B (2007) Phil Mag Lett 87:423

    CAS  Google Scholar 

  50. Gupta VK, Yoon DH, Meyer HM, Luo J (2007) Acta Mater 55:3131

    CAS  Google Scholar 

  51. Luo J, Gupta VK, Yoon DH, Meyer HM (2005) Appl Phys Lett 87:231902

    Google Scholar 

  52. Luo J, Dillon SJ, Harmer MP (2009) Microsc Today 17:22

    CAS  Google Scholar 

  53. Cho J, Wang CM, Chan HM, Rickman JM, Harmer MP (2002) J Mater Sci 37:59. doi:10.1023/A:1013185506017

    CAS  Google Scholar 

  54. Dillon SJ, Tang M, Carter WC, Harmer MP (2007) Acta Mater 55:6208

    CAS  Google Scholar 

  55. Dillon SJ, Harmer MP (2007) Acta Mater 55:5247

    CAS  Google Scholar 

  56. Dillon SJ, Harmer MP (2008) J Eur Ceram Soc 28:1485

    CAS  Google Scholar 

  57. Pezzotti G, Nakahira A, Tajika M (2000) J Eur Ceram Soc 20:1319

    CAS  Google Scholar 

  58. Furukawa Y, Sakurai O, Shinozaki K, Mizutani N (1996) J Ceram Soc Jpn 104:900

    CAS  Google Scholar 

  59. Elfwing M, Osterlund R, Olsson E (2000) J Am Ceram Soc 83:2311

    CAS  Google Scholar 

  60. Wang H, Chiang Y-M (1998) J Am Ceram Soc 81:89

    CAS  Google Scholar 

  61. Tanaka I, Kleebe HJ, Cinibuluk MK, Bruley J, Clarke DR, Ruhle M (1998) J Am Ceram Soc 77:911

    Google Scholar 

  62. Baram M, Kaplan WD (2006) J Mater Sci 41:7775. doi:10.1007/s10853-006-0897-7

    CAS  Google Scholar 

  63. Baram M, Chatain D, Kaplan WD (2011) Science 332:206

    CAS  Google Scholar 

  64. Scheu C, Dehm G, Kaplan WD (2001) J Am Ceram Soc 84:623

    CAS  Google Scholar 

  65. Avishai A, Kaplan WD (2005) Acta Mater 53:1571

    CAS  Google Scholar 

  66. Avishai A, Scheu C, Kaplan WD (2005) Acta Mater 53:1559

    CAS  Google Scholar 

  67. Avishai A, Kaplan WD (2004) Zt Metallkde 95:266

    CAS  Google Scholar 

  68. Baram M, Garofalini SH, Kaplan WD (2011) Acta Mater 59:5710

    CAS  Google Scholar 

  69. Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS, Straumal BB, Gust W (1995) Phil Mag Lett 72:361

    CAS  Google Scholar 

  70. Valiev RZ, Murashkin MY, Kilmametov A, Straumal BB, Chinh NQ, Langdon TG (2010) J Mater Sci 45:4718. doi:10.1007/s10853-010-4588-z

    CAS  Google Scholar 

  71. Straumal BB, Sluchanko NE, Gust W (2001) Defect Diffusion Forum 188–190:185

    Google Scholar 

  72. Islam SH, Qu X, He X (2007) Powder Metall 50:11

    CAS  Google Scholar 

  73. Wei DQ, Meng QC, Jia DC (2007) Ceram Int 33:221

    CAS  Google Scholar 

  74. Solek KP, Kuziak RM, Karbowniczek M (2007) Arch Metall Mater 52:25

    CAS  Google Scholar 

  75. Ji ZS, Hu ML, Zheng XP (2007) J Mater Sci Technol 23:247

    CAS  Google Scholar 

  76. Shatilla YA, Loewen EP (2005) Nucl Technol 151:239

    CAS  Google Scholar 

  77. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y (1984) J Appl Phys 55:2083

    CAS  Google Scholar 

  78. Yu LQ, Zhong XL, Zhang YP, Yan YG, Zhen YH, Zakotnik M (2011) J Magn Magn Mater 323:1152

    CAS  Google Scholar 

  79. Matsuura Y, Hirosawa Y, Yamamoto H, Fujimura S, Sagawa M, Osamura K (1985) Jpn J Appl Phys 24:L635

    Google Scholar 

  80. Schneider G, Henig E-T, Petzow G, Stadelmaier HH (1986) Zt Metallkunde 77:755

    CAS  Google Scholar 

  81. Knoch KG, Reinsch B, Petzow G (1994) Zt Metallkunde 85:5

    Google Scholar 

  82. Barbosa LP, Takiishi H, Faria RN (2004) J Magn Magn Mater 268:232

    Google Scholar 

  83. Madaah Hosseini HR, Kianvash A (2004) J Magn Magn Mater 281:92

    CAS  Google Scholar 

  84. Yue M, Zhang JX, Liu WO, Wang GP (2004) J Magn Magn Mater 271:364

    CAS  Google Scholar 

  85. Yue M, Liu X, Xiao Y, Zhang JX (2004) J Magn Magn Mater 269:227

    CAS  Google Scholar 

  86. Pei W, He C, Lian F, Zhou G, Yang H (2002) J Magn Magn Mater 239:475

    CAS  Google Scholar 

  87. Gabay AM, Zhang Y, Hadjipanais GC (2002) J Magn Magn Mater 238:226

    CAS  Google Scholar 

  88. Yan M, Ni J, Ma T, Ahmad Z, Zhang P (2011) Mater Chem Phys 126:195

    CAS  Google Scholar 

  89. Wu Y, Ni J, Ma T, Yan M (2010) Physica B 405:3303

    CAS  Google Scholar 

  90. Ni JJ, Ma TY, Cui XG, Wu YR, Yan M (2010) J Alloys Compd 502:346

    CAS  Google Scholar 

  91. Yu LQ, Zhang YP, Fu QT (2009) Adv Mater Res 79–82:1043

    Google Scholar 

  92. Corfield MR, Harris IR, Williams AJ (2010) J Magn Magn Mater 322:36

    CAS  Google Scholar 

  93. Li WF, Ohkubo T, Hono K, Sagawa M (2009) J Magn Magn Mater 321:1100

    CAS  Google Scholar 

  94. Cui XG, Yan M, Ma TY, Yu LQ (2008) Physica B 403:4182

    CAS  Google Scholar 

  95. Mo W, Zhang L, Shan A, Cao L, Wu J, Komuro M (2008) J Alloys Compd 461:351

    CAS  Google Scholar 

  96. Mo W, Zhang L, Liu Q, Shan A, Wu J, Komuro M, Shen L (2008) J Rare Earths 26:268

    Google Scholar 

  97. Yu LQ, Zhang J, Hu SQ, Han ZD, Yan M (2008) J Magn Magn Mater 320:1427

    CAS  Google Scholar 

  98. Mo W, Zhang L, Shan A, Cao L, Wu J, Komuro M (2007) Intermetallics 15:1483

    CAS  Google Scholar 

  99. Fidler J (1985) IEEE Trans Magn 21:1955

    Google Scholar 

  100. Kronmüller H (2007) Handbook of magnetism and advanced magnetic materials. Wiley, Chichester

    Google Scholar 

  101. Komuro M, Satsu Y, Suzuki H (2010) Mater Sci Forum 638–642:1357

    Google Scholar 

  102. Ma Y, Liu Y, Li J, Li C, Chu L (2010) J Magn Magn Mater 322:2419

    CAS  Google Scholar 

  103. Zern A, Seeger M, Bauer J, Kronmüller H (1998) J Magn Magn Mater 184:89

    CAS  Google Scholar 

  104. Li S, Gu B, Bi H, Tian Z, Xie G, Zhu Y, Du Y (2002) J Appl Phys 19:7514

    Google Scholar 

  105. Liu ZW, Huang HY, Gao XX, Yu HY, Zhong XC, Zhu J, Zeng DC (2011) J Phys D 44:025003

    Google Scholar 

  106. Thielsch J, Hinz D, Schultz L, Gutfleisch O (2010) J Magn Magn Mater 322:3208

    CAS  Google Scholar 

  107. Stolyarov VV, Gunderov DV, Popov AG, Puzanova TZ, Raab GI, Yavari AR, Valiev RZ (2002) J Magn Magn Mater 242–245:1399

    Google Scholar 

  108. Stolyarov VV, Gunderov DV, Valiev RZ, Popov AG, Gaviko VS, Ermolenko AS (1999) J Magn Magn Mater 196–197:166

    Google Scholar 

Download references

Acknowledgements

The authors thank the Allianz Industrie Forschung (project FE.5150.0028.4067), Max-Planck Institut für Intelligente Systeme (Stuttgart), the Programme of Creation and Development of the National University of Science and Technology ‘MISiS’, the Russian Foundation for Basic Research (grants 10-02-00086, 11-03-00029 and 11-08-90439) and the Ukrainian Fundamental Research State Fund (grant Φ28.2107) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straumal, B.B., Kucheev, Y.O., Yatskovskaya, I.L. et al. Grain boundary wetting in the NdFeB-based hard magnetic alloys. J Mater Sci 47, 8352–8359 (2012). https://doi.org/10.1007/s10853-012-6618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6618-5

Keywords

Navigation