Skip to main content
Log in

Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetostrictive particles like Terfenol-D are investigated with respect to their ability to detect internal stress, generated in carbon fibre-reinforced polymers (CFRP) in a non-destructive way. The results are presented in two parts. The first part elucidates the ideas for the preparation of dispersions based on these particles with high density in epoxy resins. There is particular focus on the effects of particle size and concentration. Different particle sizes in a range of 0–300 μm are selected by special separation techniques. The particle size distribution is controlled in dry state by laser diffraction method. Changing of the chemical composition, particularly by the oxidation of particles, is analysed by EDX. Use of a magnetic field is identified as a suitable means for the stabilisation of these high-weighted particle fractions dispersed in epoxy resins. The particle size distribution, as well as the alignment of particles, in the cured epoxy resins is investigated by SEM and light microscopy. The second part of the study covers the magnetostrictive properties of the modified epoxy resins which are quantified by the detection of internal stress in CFRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rudd CD, Long AC, Kendall KN, Mangin CGE (1998) Liquid moulding technologies. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  2. Kruckenberg TK, Paton R (1998) Resin transfer moulding for aerospace structures. Kluwer, Dordrecht

    Google Scholar 

  3. Kleineberg M, Nickel J, Pabsch A, Sigle C, Schöppinger C (2000) Equipment an method for production of fibre-reinforced composites and/or plastic components according to a modified RTM method. DE 198 53 709 C1

  4. Jensen HM (2002) Acta Mater 50:2895

    Article  CAS  Google Scholar 

  5. Coker EG, Filon LNG (1931) A treatise on photoelasticity. Cambridge University Press, Cambridge

    Google Scholar 

  6. Frocht MM (1941) Photoelasticity, vol 1 (1941), vol 2 (1948). Wiley, New York

  7. Lloyd JM (1975) Thermal imaging systems. Springer. ISBN 9780306308482

  8. Guzmán de Villoria R, Yamamoto N, Miravete A, Wardle BL (2011) Nanotechnology 22:185502

    Article  Google Scholar 

  9. Ling HY, Lau KT, Cheng L, Su Z (2006) Compos Struct 76:88

    Article  Google Scholar 

  10. Yashiro S, Okabe T, Takeda N (2007) Compos Sci Technol 67:286

    Article  Google Scholar 

  11. Okabe Y, Yashiro S, Tsuji R, Mizutani T, Takeda N (2002) Compos Part A 33:991

    Article  Google Scholar 

  12. Krautkraemer J, Krautkraemer H (1990) Ultrasonic testing of materials. Springer. ISBN 9783540512318

  13. Wang X, Chung DDL (1998) Compos Interfaces 5:277

    Article  CAS  Google Scholar 

  14. Böger L, Wichmann MH, Meyer LO, Schulte K (2008) Compos Sci Technol 68:1886

    Article  Google Scholar 

  15. Schulte K, Baron Ch (1989) Compos Sci Technol 36:349

    Google Scholar 

  16. De la Vega A, Kovacs JZ, Bauhofer W, Schulte K (2009) Compos Sci Technol 69:1540

    Article  Google Scholar 

  17. De la Vega A, Kinloch IA, Young RJ, Bauhofer W, Schulte K (2011) Compos Sci Technol 71:160

    Article  Google Scholar 

  18. Kupke M, Schulte K, Schüler R (2001) Compos Sci Technol 61:837

    Article  CAS  Google Scholar 

  19. Muto N, Arai Y, Shin SG, Matsubara H, Yanagida H, Sugita M et al (2001) Compos Sci Technol 61:875

    Article  CAS  Google Scholar 

  20. Egusa S, Iwasawa N (1996) J Reinf Plast Compos 15:806

    CAS  Google Scholar 

  21. Zhang Y (2006) J Intell Mater Syst Struct 17:843

    Article  Google Scholar 

  22. Krishnamurthy AV, Anjanappa M, Wang Z, Chen X (1999) J Intell Mater Syst Struct 10:825

    Article  Google Scholar 

  23. Saidha E, Naik GN, Gopalkrishnan S (2003) Struct Health Monit 2:273

    Article  Google Scholar 

  24. Giurgiutiu V, Jichi F, Berman JB, Kamphaus JM (2001) Smart Mater Struct 10:934

    Article  Google Scholar 

  25. Schilde C, Nolte H, Arlt C, Kwade A (2010) Compos Sci Technol 70:657

    Article  CAS  Google Scholar 

  26. Jiles DC (1995) J Phys D Appl Phys 28:1573

    Article  Google Scholar 

  27. Lee EW (1955) Rep Prog Phys 18:184

    Article  Google Scholar 

  28. Newnham RE (1986) Ferroelectrics 1:1

    Article  Google Scholar 

  29. Skinner DP, Newnham RE, Cross LE (1978) Mater Res Bull 13:599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. C. Schilde (Institute for Particle Technology, Technical University Braunschweig, Germany) for carrying out particle fractionations and detection of the particle size distributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mahrholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubicka, M., Mahrholz, T., Kühn, A. et al. Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes. J Mater Sci 47, 5752–5759 (2012). https://doi.org/10.1007/s10853-012-6466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6466-3

Keywords

Navigation