Skip to main content
Log in

Structural and electronic impact of SrTiO3 substrate on TiO2 thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We demonstrate that the atomic structures, electronic states, and bonding nature of the interface between SrTiO3 substrate and anatase TiO2 thin films could be related and technologically manipulated at the atomic level. Applying advanced transmission electron microscopy, the grown anatase TiO2 thin films are found to make a clean and direct contact to the SrTiO3 substrates in an epitaxial, coherent, and atomically abrupt way. The atomic-resolution microscopic images reveal that the interface comprises SrO-terminated SrTiO3 and Ti-terminated TiO2 with the interfacial Ti of TiO2 sitting above the hollow site, which is confirmed theoretically to be the most energetically favorable. Quantitatively, the first-principles calculations predict that the oxygen sublattice at the interface undergoes a notable reconstruction, i.e., the interfacial O atoms of TiO2 are displaced largely toward the SrO plane of the SrTiO3, flattening the originally zigzag TiO2 atomic chains. Consequently, the interfacial layers suffer a remarkable modification in the charge accumulation and also a deviation in the density of states from their bulk counterparts, indicating that the substrate can have an impact on the deposited thin films electronically. Using several analytic methods, the SrTiO3/TiO2 interface is found to take on a metallic nature, and the interfacial bonding is determined to be of a mixed covalent and ionic character. This combined experimental and theoretical investigation gains insight into the complex atomic and electronic structures of the buried interface, which are fundamental for relating the atomic-scale structures to their properties on a quantum level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo B, Liu Z, Hong L, Jiang H (2005) Surf Coat Technol 198:24

    Article  CAS  Google Scholar 

  2. Fukahori S, Ichiura H, Kitaoka T, Tanaka H, Wariishi H (2007) J Mater Sci 42:6087. doi:10.1007/s10853-006-1150-0

    Article  CAS  Google Scholar 

  3. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  4. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669. doi:10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  5. Kim H, Kushto GP, Arnold CB, Kafafi ZH, Piqué A (2004) Appl Phys Lett 85:464

    Article  CAS  Google Scholar 

  6. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  7. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488

    Article  CAS  Google Scholar 

  8. Choi YL, Kim SH, Song YS, Lee DY (2004) J Mater Sci 39:5695. doi:10.1023/B:JMSC.0000040078.09843.cb

    Article  CAS  Google Scholar 

  9. Murakami M, Matsumoto Y, Nakajima K, Makino T, Segawa Y, Chikyow T, Ahmet P, Kawasaki M, Koinuma H (2001) Appl Phys Lett 78:2664

    Article  CAS  Google Scholar 

  10. Kenndey RJ, Stampe PA (2003) J Cryst Growth 252:333

    Article  Google Scholar 

  11. Lotnyk A, Senz S, Hesse D (2007) Thin Solid Films 515:3439

    Article  CAS  Google Scholar 

  12. Park BH, Huang JY, Li LS, Jia QX (2002) Appl Phys Lett 80:1174

    Article  CAS  Google Scholar 

  13. Yamada N, Hitosugi T, Kasai J, Huong Hoang NL, Nakao S, Hirose Y, Shimada T, Hasegawa T (2009) J Appl Phys 105:123702

    Article  Google Scholar 

  14. Stampe PA, Kennedy RJ, Xin Y, Parker JS (2003) J Appl Phys 93:7864

    Article  CAS  Google Scholar 

  15. Chambers SA, Wang CM, Thevuthasan S, Droubay T, McCready DE, Lea AS, Shutthanandan V, Windisch CF Jr (2002) Thin Solid Films 418:197

    Article  CAS  Google Scholar 

  16. Tuan AC, Kaspar TC, Droubay T, Rogers JW, Chambers SA (2003) Appl Phys Lett 83:3734

    Article  CAS  Google Scholar 

  17. Zhu M, Chikyow T, Ahmet P, Naruke T, Murakami M, Matsumoto Y, Koinuma H (2003) Thin Solid Films 441:140

    Article  CAS  Google Scholar 

  18. Dabney MS, van Hest MFAM, Teplin CW, Arenkiel SP, Perkins JD, Ginley DS (2008) Thin Solid Films 516:4133

    Article  CAS  Google Scholar 

  19. Weng X, Fisher P, Skowronski M, Salvador PA, Maksimov O (2008) J Cryst Growth 310:545

    Article  CAS  Google Scholar 

  20. Zhang SX, Kundaliya DC, Yu W, Dhar S, Young SY, Salamanca-Riba LG, Ogale SB, Vispute RD, Venkatesan T (2007) J Appl Phys 102:013701

    Article  Google Scholar 

  21. Batson PE, Dellby N, Krivanek OL (2002) Nature 418:617

    Article  CAS  Google Scholar 

  22. Akita T, Tanaka K, Kohyama M (2008) J Mater Sci 43:3917. doi:10.1007/s10853-007-2401-4

    Article  CAS  Google Scholar 

  23. Buban JP, Matsunaga K, Chen J, Shibata N, Ching WY, Yamamoto T, Ikuhara Y (2006) Science 311:212

    Article  CAS  Google Scholar 

  24. Wang ZC, Saito M, McKenna KP, Gu L, Tsukimoto S, Shluger AL, Ikuhara Y (2011) Nature 479:380

    Article  CAS  Google Scholar 

  25. Weissmann M, Ferrari V, Saúl A (2010) J Mater Sci 45:4945. doi:10.1007/s10853-010-4231-z

    Article  CAS  Google Scholar 

  26. Roberts KG, Varela M, Rashkeev S, Pantelides ST, Pennycook SJ, Krishnan KM (2008) Phys Rev B 78:014409

    Article  Google Scholar 

  27. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  28. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  29. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  30. Takahashi KS, Hwang HY (2008) Appl Phys Lett 93:082112

    Article  Google Scholar 

  31. Pennycook SJ, Boatner LA (1988) Nature 336:565

    Article  CAS  Google Scholar 

  32. Eglitis RI, Vanderbilt D (2008) Phys Rev B 77:195408

    Article  Google Scholar 

  33. Iacomino A, Cantele G, Trani F, Ninno D (2010) J Phys Chem C 114:12389

    Article  CAS  Google Scholar 

  34. Howard SA, Yau JK, Anderson HU (1989) J Appl Phys 65:1492

    Article  CAS  Google Scholar 

  35. Dewhurst JK, Lowther JE (1996) Phys Rev B 54:R3673

    Article  CAS  Google Scholar 

  36. Zhang C, Wang CL, Li JC, Yang K, Zhang YF, Wu QZ (2008) Mater Chem Phys 107:215

    Article  CAS  Google Scholar 

  37. Fabricius G, Peltzer y Blanca EL, Rodriguez CO, Ayala AP, de la Presa P, Lopez Carcía A (1997) Phys Rev B 55:164

    Article  CAS  Google Scholar 

  38. Cardona M (1965) Phys Rev 140:A651

    Article  Google Scholar 

  39. Peng HW, Li JB, Li SS, Xia JB (2009) Phys Rev B 79:092411

    Article  Google Scholar 

  40. Valentin CD, Pacchioni G, Selloni A (2009) J Phys Chem C 113:20543

    Article  Google Scholar 

  41. Wang ZC, Tsukimoto S, Saito M, Ikuhara Y (2009) J Appl Phys 106:093714

    Article  Google Scholar 

  42. Wang ZC, Zeng W, Gu L, Saito M, Tsukimoto S, Ikuhara Y (2010) J Appl Phys 108:113701

    Article  Google Scholar 

  43. Wang ZC, Tsukimoto S, Saito M, Ikuhara Y (2009) Phys Rev B 79:045318

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported in part by a Grant-in-Aid for Scientific Research on Priority Area, “Atomic Scale Modification (474)” from the MEXT of Japan. Z.W. thanks support from a Grant-in-Aid for Young Scientists (B) (Grant no. 22760500). Calculations were conducted at the Institute for Solid State Physics, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Sun, R., Chen, C. et al. Structural and electronic impact of SrTiO3 substrate on TiO2 thin films. J Mater Sci 47, 5148–5157 (2012). https://doi.org/10.1007/s10853-012-6392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6392-4

Keywords

Navigation