Skip to main content

Advertisement

Log in

A tribological and biomimetic study of PI–CNT composites for cartilage replacement

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article presents an investigation into the possible matching of mechanical properties of a polyimide (PI)–carbon nanotube (CNT) composite system to natural cartilage tissue. Currently used ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements presents certain drawbacks due to a mismatch in mechanical and tribological properties with those of a natural bone joint. Natural cartilage tissue is a composite material itself, being composed of collagen fibers, hydrophilic proteoglycan molecules, cells and other constituents. The current investigation attempts to mimic the mechanical and tribological properties of natural cartilage tissue by varying the CNT concentration in a PI matrix. Nanoindentation and pin-on-flat tribological tests were conducted for this purpose. It was found that the coefficient of friction (COF) reached a minimum at a concentration of 0.5% CNT (by volume) when articulated against Ti6Al4V alloy. When articulated against Ti6Al4V alloy in the presence of a lubricant, the minimum COF was obtained at a concentration of 0.2% CNT. The maximum penetration depth under nanoindentation varied with CNT concentration and indicated that the mechanical properties could be tailored to match that of cartilage tissue. A closer investigation into this behavior was carried out using scanning electron, transmission electron, and atomic force microscopy. It was noticed that there is good bonding between the CNTs and polyimide matrix. There was a ductile to brittle transition as the concentration of CNT was increased. Competing interactions between nanotube–matrix and nanotube–nanotube are possible reasons for the deformation and friction behavior identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lewis G (1997) J Biomed Mater Res 38(1):55

    Article  CAS  Google Scholar 

  2. Sargeant A, Goswami T (2006) Mater Des 27(4):287

    Article  CAS  Google Scholar 

  3. Li S, Burnstein AH (1994) J Bone Joint Surg 76A:1080

    Google Scholar 

  4. Gómez-Barrena E, Chang JD, Li S (1996) In: Pritchard DJ (ed) Instructional course lectures 45. American Academy of Orthopaedic Surgeons, Rosemont, IL

    Google Scholar 

  5. Premnath V, Harris WH, Jasty M, Merill EW (1996) Biomaterials 17:1741

    Article  CAS  Google Scholar 

  6. Edidin AA, Pruitt L, Jewett CW, Crane DJ, Roberts D, Kurtz SM (1999) J Arthroplasty 14(5):616

    Article  CAS  Google Scholar 

  7. Wang A, Sun DC, Yau SS, Edwards B, Sokol M, Essner A, Polineni VK, Stark C, Dumbleton JH (1997) Wear 203:230

    Article  Google Scholar 

  8. Pruitt LA (2005) Biomaterials 26:905

    Article  CAS  Google Scholar 

  9. Pascaud RS, Evans WT, McCullagh PJ, Fitzpatrick DP (1997) Biomaterials 18:727

    Article  CAS  Google Scholar 

  10. Kurtz SM, Rimnac CM, Pruitt L, Jewett CW, Goldberg V, Edidin AA (2000) Biomaterials 21:283

    Article  CAS  Google Scholar 

  11. Jiang X, Bin Y, Matsuo M (2005) Polymer 46:7418

    Article  CAS  Google Scholar 

  12. Shen C, Dumbleton JH (1976) Wear 40:351

    Article  CAS  Google Scholar 

  13. Richardson RR, Miller JA, Reichert WM (1976) Biomaterials 14(8):627

    Article  Google Scholar 

  14. Cai H, Yan F, Xue Q (2004) Mater Sci Eng A 364:94

    Article  Google Scholar 

  15. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) Carbon 44:1034

    Article  CAS  Google Scholar 

  16. Cenni E, Granchi D, Arciola CR, Ciapetti G, Savarino L, Stea S (1995) Biomaterials 16(16):1223

    Article  CAS  Google Scholar 

  17. Ma L, Sines G (1983) J Biomed Mater Res 51A(1):61

    Google Scholar 

  18. Haubold AD (1983) ASAIO J 6:88

    CAS  Google Scholar 

  19. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678

    Article  CAS  Google Scholar 

  20. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Nature 389:582

    Article  CAS  Google Scholar 

  21. Ebbesen TW, Lezec HJ, Hinura H, Bennett JW, Ghaemi HF, Thio T (1996) Nature 382:54

    Article  CAS  Google Scholar 

  22. Dai H (2002) Acc Chem Res 35:1035

    Article  CAS  Google Scholar 

  23. Buldum A, Lu JP (1999) Phys Rev Lett 83:5050

    Article  CAS  Google Scholar 

  24. Zhou X, Shin E, Wang KW, Bakis CE (2004) Comp Sci Technol 64(15):2425

    Article  CAS  Google Scholar 

  25. Koratkar N, Suhr J, Joshi A, Kane R, Schadler L, Ajayan P, Bartolucci S (2005) Appl Phys Lett 87(6):063102

    Article  Google Scholar 

  26. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Nat Mater 4:134

    Article  CAS  Google Scholar 

  27. Koratkar N, Wei BQ, Ajayan PM (2002) Adv Mater 14:997

    CAS  Google Scholar 

  28. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76(14):2511

    Article  CAS  Google Scholar 

  29. Barber AH, Cohen SR, Wagner DH (2003) Appl Phys Lett 82(23):4140

    Article  CAS  Google Scholar 

  30. Savage RH (1991) J Appl Phys 19(1):1

    Article  Google Scholar 

  31. Mangalick MC (1974) Carbon 12(5):573

    Article  CAS  Google Scholar 

  32. Vander Wal RL, Miyoshi K, Street KW, Tomasek AJ, Peng H, Liu Y, Margrave JL, Khabashesku VN (2005) Wear 259:738

    Article  CAS  Google Scholar 

  33. Ni B, Sinott SB (2001) Surf Sci 487:87

    Article  CAS  Google Scholar 

  34. Park C, Crooks RE, Siochi EJ, Harrison JS, Evans N, Kenik E (2003) Nanotechnology 14:L11

    Article  CAS  Google Scholar 

  35. Banda S (2004) Characterization of aligned carbon nanotubes/polymer composites. MSc thesis, Virginia Commonwealth University, Richmond, VA

  36. Deshmukh S, Ounaies Z (2009) Sens Actuators A Phys 155:246

    Article  Google Scholar 

  37. Ounaies Z, Park C, Lillehei P, Harrison J (2008) J Therm Comp Mater 21:393

    Article  CAS  Google Scholar 

  38. Goodfellow Corporation (2010) Oakdale, PA. http://www.goodfellow.com. Accessed 15 August, 2010

  39. Kokubo T, Kushitani H, Sakka S (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

  40. Mow VC, Ratcliffe A, Poole AR (1992) Biomaterials 13(2):67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of US National Science Foundation (0535578). They also wish to thank the support of the Materials Characterization Facility and the Microscopy Imaging Center at the Texas A&M University for surface characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, R., Banda, S., Ounaies, Z. et al. A tribological and biomimetic study of PI–CNT composites for cartilage replacement. J Mater Sci 47, 649–658 (2012). https://doi.org/10.1007/s10853-011-5835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5835-7

Keywords

Navigation