Skip to main content
Log in

Metastable phase diagrams of Cu-based alloy systems with a miscibility gap in undercooled state

  • ABBASCHIAN FESTSCHRIFT
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Some Cu-based alloy systems with a large positive enthalpy of mixing display a eutectic or peritectic phase diagram under equilibrium conditions, but show a metastable liquid miscibility gap in the undercooled state. When the melt is undercooled below certain temperature beyond the critical liquid-phase separation temperature, it separates into two liquids with different compositions. The compositions of the two liquids change successively upon the metastable phase diagram before solidification occurs. The shape and position of the metastable miscibility gap are dependent of the alloy components and their interaction features. This study reviews the metastable phase diagrams of Cu-based alloy systems, which are derived from experiments and thermodynamic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nakagawa Y (1958) Acta Metall 6:704

    Article  CAS  Google Scholar 

  2. Munitz A, Elder SP, Abbaschian R (1992) Metall Trans 23A:1817

    CAS  Google Scholar 

  3. Munitz A, Abbaschian R (1996) Metall Mater Trans A 27A:4049

    Article  CAS  Google Scholar 

  4. Robinson MB, Li D, Rathz TJ, Williams G (1999) J Mater Sci 34:3747. doi:10.1023/A:1004688313591

    Article  CAS  Google Scholar 

  5. Yamauchi I, Ueno N, Shimaoka M, Ohnaka I (1998) J Mater Sci 33:371. doi:10.1023/A:1004319829612

    Article  CAS  Google Scholar 

  6. Letzig T, Cao CD, Bender W, Kolbe M, Herlach DM (2000) Mat-wissuwerkstofftechnik 31:825

    Article  CAS  Google Scholar 

  7. Cao CD, Herlach DM, Kolbe M, Gorler GP, Wei B (2003) Scr Mater 48:5

    Article  CAS  Google Scholar 

  8. Cao CD, Herlach DM, Wei B (2002) J Mater Sci Lett 21:341

    Article  CAS  Google Scholar 

  9. Cao CD, Gorler GP, Herlach DM, Wei B (2002) Mater Sci Eng A325:503

    CAS  Google Scholar 

  10. Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171

    Article  CAS  Google Scholar 

  11. Curiotto S, Pryds NH, Johnson E, Battezzati L (2007) Mater Sci Eng A449–451:644

    Google Scholar 

  12. Curiotto S, Greco RH, Pryds N, Johnson E, Battezzati L (2007) Fluid Phase Equilib 256:132

    Article  CAS  Google Scholar 

  13. Zhao JZ, Kolbe M, Li HL, Gao JR, Ratke L (2007) Metall Mater Trans A 38A:1162

    Article  CAS  Google Scholar 

  14. Lindqvist PA, Uhrenius B (1980) Calphad 3:193

    Article  Google Scholar 

  15. Chuang YY, Schmid R, Chang YA (1984) Metall Trans A 15:1921

    Article  Google Scholar 

  16. Lu XY, Cao CD, Wei B (2001) Mater Sci Eng A313:198

    CAS  Google Scholar 

  17. Hasebe M, Nishizawa T (1980) Calphad 4:83

    Article  CAS  Google Scholar 

  18. Qkamoto H (1993) Phase diagram of binary iron alloys. ASM International, Materials Park, OH, pp 131–137

    Google Scholar 

  19. Wilde G, Willnecker R, Singh RN, Sommer F (1997) Z Metallked 88:804

    CAS  Google Scholar 

  20. Wilde G, Perepezko JH (1999) Acta Mater 47:3009

    Article  CAS  Google Scholar 

  21. Turchanin MA, Agraval PG (2001) Powder Metall Met Ceram 40:7

    Google Scholar 

  22. Wang CP, Liu XJ, Ohnuma I, Kainuma R, Lshida K (2002) Science 9:990

    Article  Google Scholar 

  23. Hindrichs G (1908) Z Anorg Chem 59:415

    Article  Google Scholar 

  24. Siedschlag E (1923) Z Anorg Chem 131:173

    Article  CAS  Google Scholar 

  25. Leonov M, Bochvar N, Ivanchenko V, Nauk D (1986) Akad SSSR 290:888

    CAS  Google Scholar 

  26. Müller R (1988) Siemens Forsch u Entwickl Ber 17:105

    Google Scholar 

  27. Kuznetsov GM, Fedorov VN, Rodnyanskaya AL (1977) Sov Non-Ferrous Met Res 3:104

    Google Scholar 

  28. Chakrabarti DJ, Laughlin DE (1984) Bull Alloy Phase Diagrams 5:59

    Article  CAS  Google Scholar 

  29. Zeng K, Hämäläinen M (1995) Calphad 19:93

    Article  CAS  Google Scholar 

  30. Jacobs KT, Priya S, Waseda Y (2000) Z Metallkd 91:594

    Google Scholar 

  31. Sun ZB, Zhang C, Zhu Y, Yang Z, Ding B, Song X (2003) J Alloys Compd 361:165

    Article  CAS  Google Scholar 

  32. Zhou ZM, Wang YP, Gao J, Kolbe M (2005) Mater Sci Eng A398:318

    CAS  Google Scholar 

  33. Gao J, Wang YP, Zhou ZM, Kolbe M (2007) Mater Sci Eng A449–451:654

    Google Scholar 

  34. Zhou ZM, Gao J, Li F, Zhang YK, Wang YP, Kolbe M (2009) J Mater Sci 44:3793. doi:10.1007/s10853-009-3511-y

    Article  CAS  Google Scholar 

  35. Popov IA, Shiryaeva NV (1961) Russ J Inorg Chem 6:1184

    Google Scholar 

  36. Allibert C, Driole J, Bonnier E (1969) Acad Sci Paris 268C:1579

    Google Scholar 

  37. Smith JF, Lee KJ, Baily DM (1984) Bull Alloy Phase Diagrams 5:1984

    Google Scholar 

  38. Chakrabari DJ, Laughlin DE (1982) Bull Alloy Phase Diagrams 2:455

    Article  Google Scholar 

  39. Li D, Robinson MB, Rathz TJ (2000) J Phase Equilib 2:2000

    Google Scholar 

  40. Munitz A, Bamberger M, Venkert A, Landau P, Abbaschian R (2009) J Mater Sci 44:64. doi:10.1007/s10853-008-3115-y

    Article  CAS  Google Scholar 

  41. Munitz A, Abbaschian R (1998) J Mater Sci 33:3639. doi:10.1023/A:1004663530929

    Article  CAS  Google Scholar 

  42. Kim DI, Abbaschian R (2000) J Phase Equilib 21:25

    Article  CAS  Google Scholar 

  43. Bamberger M, Munitz A, Kaufman L, Abbaschian R (2002) Calphad 26:375

    Article  CAS  Google Scholar 

  44. Wang CP, Liu XJ, Ohnuma I, Kainuma R, Ishida K (2002) J Phase Equilib 23:236

    Article  CAS  Google Scholar 

  45. Cao CD, Görler GP (2005) Chin Phys Lett 22:482

    Article  CAS  Google Scholar 

  46. Munitz A, Bamberger AM, Wannaparhun S, Abbaschian R (2006) J Mater Sci 41:2749. doi:10.1007/s10853-006-5598-8

    Article  CAS  Google Scholar 

  47. Curiotto S, Battezzati L, Johnson E, Palumbo M, Pryds N (2008) J Mater Sci 43:3253. doi:10.1007/s10853-008-2540-2

    Article  CAS  Google Scholar 

  48. Sun ZB, Song X, Hu Z, Yang S, Liang G, Cochrane R (2001) J Alloys Compd 319:276

    Article  CAS  Google Scholar 

  49. Curiotto S, Battezzati L, Johnson E, Pryds N (2007) Acta Mater 55:6642

    Article  CAS  Google Scholar 

  50. Sun ZB, Guo J, Li Y, Zhu YM, Li Q, Song XP (2008) Metall Mater Trans A 39A:1054

    Article  CAS  Google Scholar 

  51. Sun ZB, Guo J, Song XP, Zhu YM, Li Y (2008) J Alloys Compd 455:243

    Article  CAS  Google Scholar 

  52. Jellinghaus W (1936) Archiv fur das Eisenhuettenwesen 10:115

    CAS  Google Scholar 

  53. Maddocks WR, Claussen GE (1936) Iron and Steel Institute, London, Special Report 14:116

  54. Oikawa K (1981) Thesis of Master of Engineering. Tohoku University, Japan

  55. Jiang M, Hao SM (1990) In: Proceedings of the 6th national symposium on phase diagram, p 150

  56. Ohtani H, Suda H, Ishida K (1997) ISIJ Int 37:207

    Article  CAS  Google Scholar 

  57. Waehlert M, Oster Z (1914) Berg Huttenwesen 62:357

    Google Scholar 

  58. Dannohl V, Neumann H (1938) Z Metallkd 30:217

    CAS  Google Scholar 

  59. Hasebe M, Oikawa K, Nishizawa T (1982) J Jpn Inst Met 46:584

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Jing Wang and Mr. Xiang Zeng for their help. This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 50871088 and 50871081), the Natural Science Foundation of Shaanxi, the International Cooperation Program of Shaanxi, and Specialized Research Fund for the Doctoral Program of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongde D. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C.D., Sun, Z., Bai, X.J. et al. Metastable phase diagrams of Cu-based alloy systems with a miscibility gap in undercooled state. J Mater Sci 46, 6203–6212 (2011). https://doi.org/10.1007/s10853-011-5612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5612-7

Keywords

Navigation