Skip to main content
Log in

Characterization of damping in carbon-nanotube filled fiberglass reinforced thermosetting-matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Use of carbon nanotubes as additives to composite parts for the purpose of increased damping has been the subject of much recent attention, owing to their large surface area per weight ratio which provides for frictional losses at the carbon nanotube–resin matrix interface. This article presents an experimental study to quantify the structural damping in composites due to the addition of carbon nanotubes to thermosetting resin systems with and without fiberglass reinforcement. Carbon nanotubes of varying quantity and morphology are ultrasonically dispersed in epoxy resin and are compression molded to form test samples that are used in forced vibration, free vibration with initial tip deflection, and tension tests to determine their damping ratio, specific damping capacity, and Young’s modulus. Results show increased stiffness and specific damping capacity with the addition of carbon nanotubes and particularly increased frictional loss with increasing surface area to weight ratio. The addition of fiberglass reinforcement to composite samples is shown to reduce the effective damping ratio over plain epoxy samples and carbon nanotube-filled epoxy samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liao W, Wang KW (1997) J Sound Vib 207(3):319

    Article  Google Scholar 

  2. Nayfeh S (2004) J Sound Vib 276:689

    Article  Google Scholar 

  3. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12(10):750

    Article  CAS  Google Scholar 

  4. Breuer O, Sundararaj U (2004) Polym Compos 25(6):630

    Article  CAS  Google Scholar 

  5. Xu Y, Ray G, Abdel-Magid B (2006) Comp Appl Sci Manufac 37:114

    Article  CAS  Google Scholar 

  6. Zhou X, Shin E, Wang KW, Bakis CE (2004) Compos Sci Technol 64:2425

    Article  CAS  Google Scholar 

  7. Koratkar N, Wei B, Ajayan PM (2002) Adv Mater 14(13,14):997

    Article  CAS  Google Scholar 

  8. Wei C (2006) Appl Phys Lett 88:042905

    Article  Google Scholar 

  9. Schadler LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73(26):3842

    Article  CAS  Google Scholar 

  10. Zhou X, Wang KW (2004) Proc SPIE 5386:162

    Article  CAS  Google Scholar 

  11. Ding W, Eitan A, Fisher F, Chen X, Dikin D, Andrews R, Brinson L, Schadler L, Ruoff R (2003) Nano Lett 3(11):1593

    Article  CAS  Google Scholar 

  12. Fisher F, Eitan A, Andrews R, Schadler L, Brinson L (2004) Adv Comp Lett 13(2):105

    Google Scholar 

  13. Eitan A, Fisher F, Andrews R, Brinson L, Schadler L (2006) Compos Sci Technol 66:1159

    Article  Google Scholar 

  14. Koratkar NA et al. (2005) Appl Phys Lett 87

  15. Suhr J, Zhang W, Ajayan PM, Koratkar NA (2006) Nano Lett 6(2):219

    Article  CAS  Google Scholar 

  16. Koratkar NA, Wei B, Ajayan PM (2003) Compos Sci Technol 63:1525

    Article  CAS  Google Scholar 

  17. Rajoria H, Jalili N (2005) Compos Sci Technol 65:2079

    Article  CAS  Google Scholar 

  18. Mahmoodi SN, Khadem SE, Jalili N (2006) Arch Appl Mech 75:153

    Article  Google Scholar 

  19. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Nat Mater 4:134

    Article  CAS  Google Scholar 

  20. Suhr J, Schadler L, Koratkar N (2005) Proc SPIE 5760:164

    Article  CAS  Google Scholar 

  21. Standard test method for tensile properties of plastics, ASTM D638–02a, Annual Book of ASTM Standards, vol. 8.01 (2005)

  22. Rao SS (1995) Mechanical Vibrations, 3rd edn. Addison-Wesley, New York

    Google Scholar 

  23. Adhikari S (2000) Damping models of structural vibration. Ph.D. Dissertation, Cambridge University, Cambridge

  24. Beer FP, Johnston ER (1992) Mechanics of materials, 2nd en. McGraw-Hill, New York

    Google Scholar 

  25. Feeny BF, Liang JW (1996) J Sound Vib 195(1):149

    Article  Google Scholar 

  26. Liang JW, Feeny BF (1998) Nonlin Dynam 16:337

    Article  Google Scholar 

  27. Nashif AD (1985) Vibration Damping. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Owens Corning for providing gratis the fiberglass preform material used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pitchumani.

Additional information

This study was funded by the National Science Foundation through Grant nos. CBET-0522933 and CBET-0934008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.J., Tang, J. & Pitchumani, R. Characterization of damping in carbon-nanotube filled fiberglass reinforced thermosetting-matrix composites. J Mater Sci 46, 4545–4554 (2011). https://doi.org/10.1007/s10853-011-5349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5349-3

Keywords

Navigation