Skip to main content
Log in

Cation off-stoichiometric SrMnO3−δ thin film grown by pulsed laser deposition

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The laser energy density (laser fluence) dependency of the Sr/Mn ratio was investigated for SrMnO3−δ (SMO) thin films grown by pulsed laser deposition (PLD). It was found that the Sr/Mn ratio showed a steep increase followed by a gradual increase as the laser fluence was increased. However, the Sr/Mn ratio always showed Mn-excess under the present laser fluence condition as long as stoichiometric SrMnO3 targets were used. In order to obtain cation stoichiometric SMO films, it was necessary to use Sr-excess SrMnO3 targets in addition with laser fluence tuning. The crystal quality of the SMO thin film was found to vary with the Sr/Mn ratio. In stoichiometric or Sr-excess SMO thin films, epitaxial thin films could be obtained, whereas Mn-excess thin films showed very low crystallinity. Sr-excess films were also found to have some extra SrO planes. In addition, they exhibited out-of-plane lattice expansion which electron energy loss spectroscopy analysis revealed was due to Mn vacancies. The variation of film growth was closely related to point defects due to excess cations included in growing thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ohnishi T, Lippmaa M, Yamamoto T, Meguro S, Koinuma H (2005) Appl Phys Lett 87:241919

    Article  Google Scholar 

  2. Ohnishi T, Shibuya K, Yamamoto T, Lippmaa M (2008) J Appl Phys 103:103703

    Article  Google Scholar 

  3. Brooks CM, Kourkoutis LF, Heeg T, Schubert J, Muller DA, Schlom DG (2009) Appl Phys Lett 94:162905

    Article  Google Scholar 

  4. Kim YS, Kim DJ, Kim TH, Noh TW, Choi JS, Park BH, Yoon JG (2007) Appl Phys Lett 91:042908

    Article  Google Scholar 

  5. Jang HW, Kumar A, Denev S, Biegalski MD, Maksymovych P, Bark CW, Nelson CT, Folkman CM, Baek SH, Balke N, Brooks CM, Tenne DA, Schlom DG, Chen LQ, Pan XQ, Kalinin SV, Gopalan V, Eom CB (2010) Phys Rev Lett 104:197601

    Article  CAS  Google Scholar 

  6. Tokura Y, Tomioka Y (1999) J Magn Magn Mater 200:1

    Article  CAS  Google Scholar 

  7. May SJ, Ryan PJ, Robertson JL, Kim JW, Santos TS, Velthuis SGE, Karapetrova E, Zarestky JL, Eckstein JN, Bader SD, Bhattacharya A (2009) Nat Mater 8:892

    Article  CAS  Google Scholar 

  8. Konishi Y, Fang Z, Izumi M, Manako T, Kasai M, Kuwahara H, Kawasaki M, Terakura K, Tokura Y (1999) J Phys Soc Jpn 68:3790

    Article  CAS  Google Scholar 

  9. Mitchell JF, Millburn JE, Medarde M, Short S, Jorgensen JD, Fernández-Díaz MT (1998) J Solid State Chem 141:599

    Article  CAS  Google Scholar 

  10. Gillie LJ, Wright AJ, Hadermann J, Tendeloo GV, Greaves C (2002) J Solid State Chem 167:145

    Article  CAS  Google Scholar 

  11. Gillie LJ, Wright AJ, Hadermann J, Tendeloo GV, Greaves C (2003) J Solid State Chem 175:188

    Article  CAS  Google Scholar 

  12. Yang H, Tang YK, Jiang JL, Feng WJ, Wei ZQ, Yao LD, Zhang W, Li QA, Li FY, Jin CQ, Yu RC (2007) J Mater Sci 42:9559. doi:10.1007/s10853-007-1895-0

    Article  CAS  Google Scholar 

  13. Lee JH, Rabe KM (2010) Phys Rev Lett 104:207204

    Article  Google Scholar 

  14. HREM-Filters Lite v1.5.1 (HREM Reseach Inc). Web site: http://www.hremresearch.com

  15. Negas T, Roth SJ (1970) J Solid State Chem 1:409

    Article  Google Scholar 

  16. Negas T (1973) J Solid State Chem 7:85

    Article  CAS  Google Scholar 

  17. Kuroda K, Shinozaki K, Uematsu K, Mizutani N, Kato M (1980) J Am Ceram Soc 63(1):109

    Article  CAS  Google Scholar 

  18. Standard JCPDS diffraction pattern-36-0355 (1995) JCPDS-International Centre for Diffraction Data, PCPDFWIN, v. 1.10

  19. Pennycook SJ, Jesson DE (1991) Ultramicroscopy 37:14

    Article  Google Scholar 

  20. McCoy M, Grimes R, Lee W (1997) Philos Mag A 75:833

    Article  CAS  Google Scholar 

  21. Brous J, Fankuchen I, Banks E (1953) Acta Crystallogr 6:67

    Article  CAS  Google Scholar 

  22. Varela M, Oxley MP, Luo W, Tao J, Watanabe M, Lupini AR, Pantelides ST, Pennycook SJ (2009) Phys Rev B 79:085117

    Article  Google Scholar 

  23. Freedman DA, Roundy D, Arias TA (2009) Phys Rev B 80:064108

    Article  Google Scholar 

Download references

Acknowledgement

A part of this work was supported by the Grant-in-Aid for Scientific Research on Priority Areas “Nano Materials Science for Atomic-scale Modification 474” and Young Scientists (A) 22686059, from the Ministry of Education, Sport, and Technology (MEXT) of Japan, and this study was partially supported by “MACAN Grant No. 233484” project funded by European Framework Programme 7 (FP7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Tokuda, Y., Ohnishi, T. et al. Cation off-stoichiometric SrMnO3−δ thin film grown by pulsed laser deposition. J Mater Sci 46, 4354–4360 (2011). https://doi.org/10.1007/s10853-010-5103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5103-2

Keywords

Navigation