Skip to main content
Log in

Preparation and plasmonic properties of polymer-based composites containing Ag–Au alloy nanoparticles produced by vapor phase co-deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposite (NC) thin films with noble metal nanoparticles (NPs) embedded in a dielectric material show very attractive plasmonic properties due to dielectric and quantum confinement effects. For single component NPs, the plasmon resonance frequency can only be tuned in a narrow range. Much interest aroused in bimetallic NPs, however, many wet chemical approaches often lead to core shell particles, which exhibit multiple plasmon resonances or do not allow large variation of the NPs alloy composition and filling factor. Here, we report a vapor phase co-deposition method to produce polymer–metal NCs with embedded homogeneous Ag–Au alloy particles showing a single plasmon resonance. The method allows production of NPs with controlled alloy composition (x), metal filling (f), and nanostructure in a protecting Teflon AF matrix. The nanostructure size and shape were characterized by transmission electron microscope. Energy dispersive X-ray spectroscopy was used to determine x and f. The optical properties and the position of surface plasmon resonance were studied by UV–Vis spectroscopy. The plasmon resonance can be tuned over a large range of the visible spectrum associated with the change in x, f, and nanostructure. Changes upon annealing at 200 °C are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Faupel F, Zaporojtchenko V, Strunskus T, Greve H, Schurmann U, Takele H, Hanisch C, Chakravadhanula VSK, Na Ni, Gerber A, Quandt E, Podschun R (2008) Polym Polym Compos 16(8):471

    CAS  Google Scholar 

  2. Pinchuk AO, Schatz GC, Reinholdt A, Kreibig U (2007) Nanotechnol Res J 1:1

    Google Scholar 

  3. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  4. Link S, El-Sayed MA (1999) J Phys Chem B 103:8410

    Article  CAS  Google Scholar 

  5. Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J (1998) J Phys Chem B 102:4310

    Article  CAS  Google Scholar 

  6. Gaudry M, Lerme J, Cottancin E, Pellarin M, Vialle JL, Broyer M, Prevel B, Treilleux M, Melinon P (2001) Phys Rev B 64:085407

    Article  ADS  Google Scholar 

  7. Shibata T, Bunker B, Zhang Z, Meisel D, Vardeman C, Daniel Gezelter J (2002) J Am Chem Soc 124:11989

    Article  CAS  PubMed  Google Scholar 

  8. Chen D-H, Chen C-J (2002) J Mater Chem 12:1557

    Article  CAS  Google Scholar 

  9. Wang C, Peng S, Chan R, Sun S (2009) Small 5:567

    Article  CAS  PubMed  Google Scholar 

  10. Link S, Wang ZL, El-Sayed MA (1999) J Phys Chem B 103:3529

    Article  CAS  Google Scholar 

  11. Moskovits M, Srnova-Sloufova I, Vlckova B (2002) J Chem Phys 116:10435

    Article  CAS  ADS  Google Scholar 

  12. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) J Phys Chem B 104:11718

    Google Scholar 

  13. Schierhorn M, Liz-Marzan LM (2002) NanoLett 2:13–16

    CAS  ADS  Google Scholar 

  14. Papavassiliou GC (1976) J Phys F Metal Phys 6:L103

    Article  CAS  ADS  Google Scholar 

  15. Cottancin E, Lerme J, Gaudry M, Pellarin M, Vialle J-L, Broyer M (2000) Phys Rev B 62:5179

    Article  CAS  ADS  Google Scholar 

  16. Gonzalo G, Babonneau D, Afonso CN, Barnes J-P (2004) J Appl Phys 96:5163

    Article  CAS  ADS  Google Scholar 

  17. Baba K, Okuno T, Miyagi M (1993) Appl Phys Lett 62:437

    Article  CAS  ADS  Google Scholar 

  18. Karthikeyan B, Anija M, Philip R (2006) Appl Phys Lett 88:053104

    Article  ADS  Google Scholar 

  19. Belotelov VI, Carotenuto G, Nicolais L, Longo A, Pepe GP, Perlo P, Zvezdin AK (2006) J Appl Phys 99:044304

    Article  ADS  Google Scholar 

  20. Sanchez-Ramirez JF, Pal U, Nolasco-Hernandez L, Mendoza-Alvarez J, Pescador-Rojas JA (2008) J Nanomater 2008:Article ID 620412

  21. Biswas A, Márton Z, Kruse J, Kanzow J, Zaporojtchenko V, Faupel F, Strunskus T (2003) NanoLett 3(1):69

    CAS  ADS  Google Scholar 

  22. Biswas A, Aktas OC, Schürmann U, Saeed U, Zaporojtchenko V, Strunskus T, Faupel F (2004) Appl Phys Lett 84(14):2655

    Article  CAS  ADS  Google Scholar 

  23. Shi H, Zhang L, Cai W (2000) J Appl Phys 87:1572

    Article  CAS  ADS  Google Scholar 

  24. Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2006) Langmuir 22:1846

    Article  CAS  PubMed  Google Scholar 

  25. Schürmann U, Hartung WA, Takele H, Zaporojtchenko V, Faupel F (2005) Nanotechnology 16:1078

    Article  ADS  Google Scholar 

  26. Takele H, Schürmann U, Greve H, Paretkar D, Zaporojtchenko V, Faupel F (2006) Eur Phys J Appl Phys 33:83

    Article  CAS  ADS  Google Scholar 

  27. Mulvaney P (1996) Langmuir 12:788

    Article  CAS  Google Scholar 

  28. Sun Y, Wiley B, Li Z-Y, Xia Y (2004) J Am Chem Soc 126:9399

    Article  CAS  PubMed  Google Scholar 

  29. Mallin MP, Murphy CJ (2002) NanoLett 2:1235

    CAS  ADS  Google Scholar 

  30. Faupel F, Zaporojtchenko V, Strunkus T, Eritchsen J, Dolgner K, Thran A, Kiene M (2000) Metallization of polymers 2 (ACS Symp. Series). Academic/Plenum, New York, p 73

  31. Faupel F, Willecke R, Thran A (1998) Mater Sci Eng 22:1

    Article  Google Scholar 

  32. Thran A, Kiene M, Zaporojtchenko V, Faupel F (1999) Phys Rev Lett 82:1903

    Article  CAS  ADS  Google Scholar 

  33. Zaporojtchenko V, Zekonyte J, Biswas A, Faupel F (2003) Surf Sci 300:532

    Google Scholar 

  34. Takele H, Greve H, Pochstein C, Zaporojtchenko V, Faupel F (2006) Nanotechnology 17:3499

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Faupel F, Zaporojtchenko V, Thran A, Strunskus T, Kiene M (2004) Metal diffusion in polymers and on polymer surfaces, Chap 7. William Andrew, Norwich, p 333

  36. Takele H, Kulkarni A, Jebril S, Chakravadhanula VSK, Hanisch C, Strunskus T, Zaporojtchenko V, Faupel F (2008) J Phys D Appl Phys 41:125409

    Article  ADS  Google Scholar 

  37. Teo BK, Keating K, Kao Y-H (1987) J Am Chem Soc 109:3494

    Article  CAS  Google Scholar 

  38. Wei SH, Mbaye AA, Ferreira LG, Zunger A (1987) Phys Rev B 36:4163

    Article  CAS  ADS  Google Scholar 

  39. Murani AP (1974) Phys Rev Lett 33:91

    Article  CAS  ADS  Google Scholar 

  40. Sancho-Parramon J (2009) Nanotechnology 20:235706

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Wormeester H, Stefan Kooij E, Poelsema B (2008) Phys Status Solid A 205:756

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the German Research Foundation (DFG) under grant number Fa 234/8-1. The authors are grateful to S. Rehders for constructing the deposition chamber and for his expertise in solving technical problems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Faupel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyene, H.T., Chakravadhanula, V.S.K., Hanisch, C. et al. Preparation and plasmonic properties of polymer-based composites containing Ag–Au alloy nanoparticles produced by vapor phase co-deposition. J Mater Sci 45, 5865–5871 (2010). https://doi.org/10.1007/s10853-010-4663-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4663-5

Keywords

Navigation