Skip to main content

Advertisement

Log in

Ca-deficient hydroxyapatite/polylactide nanocomposites with chemically modified interfaces by high pressure consolidation at room temperature

  • IMEC 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP) is a close synthetic analog of the bone mineral and is often considered as a material for bone graft substitutes and tissue engineering scaffolds. Despite its attractive bioactive properties low-fracture toughness limits the use of HAP ceramics to a number of non-load-bearing applications. To obtain a more adequate mechanical behavior, HAP is often combined with polymers based on lactic and glycolic acids or polycaprolactone using hot pressing. In such composite materials, the compatibility and bonding strength of HAP–polymer interfaces are critical parameters that must be controlled and improved. This may be achieved, for example, by covalent immobilization of organic moieties on the ceramic particles surface. In this work, the surface of calcium-deficient hydroxyapatite (CDHAP) was modified by reaction with hexamethylene diisocyanate (HDI) in a non-aqueous suspension. Composites of CDHAP–HDI with polylactide (PLA) were high pressure consolidated at room temperature at 2.5 GPa yielding up to 90% theoretical density. The effects of total organic fraction and modification extent on compression strength were studied. Materials with high extent of modification and high organic content exhibited compressive strength of ~295 MPa, much higher than reported in other studies. These materials are suitable candidates for load bearing orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ilan DI, Ladd AL (2003) Operat Tech Plast Reconstr Surg 9:151

    Article  Google Scholar 

  2. St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hillbard A (2003) Am J Orthop 32:18

    PubMed  Google Scholar 

  3. Ducheyne P, Qiu Q (1999) Biomaterials 20:2287

    Article  CAS  PubMed  Google Scholar 

  4. Johnson KD, Frierson KE, Keller TS, Cook C, Scheinberg R, Zerwekh J, Meyers L, Sciadini MF (1996) J Orthop Res 14:351

    Article  CAS  PubMed  Google Scholar 

  5. Vaccaro AR, Cirello J (2002) Clin Orthop Relat Res 394:19

    Article  PubMed  Google Scholar 

  6. Yaszemski MJ, Payne PG, Hayes WC, Langer R, Mikos AG (1996) Biomaterials 17:175

    Article  CAS  PubMed  Google Scholar 

  7. Hench LL (1998) J Am Ceram Soc 81:1705

    Article  CAS  Google Scholar 

  8. Metsger DS, Rieger MR, Foreman DW (1999) J Mater Sci Mater Med 10:9

    Article  CAS  PubMed  Google Scholar 

  9. De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T (2007) J Bone Joint Surg Am 89:649

    Article  PubMed  Google Scholar 

  10. Sung HJ, Meredith C, Johnson C, Galis ZS (2004) Biomaterials 25:5735

    Article  CAS  PubMed  Google Scholar 

  11. Liu C, Xia Z, Czernuszka JT (2007) Chem Eng Res Des 85:1051

    Article  CAS  Google Scholar 

  12. Neumann M, Epple M (2006) Eur J Trauma 32:125

    Article  Google Scholar 

  13. Shikinami Y, Okuno M (1999) Biomaterials 20:859

    Article  CAS  PubMed  Google Scholar 

  14. Ignjatović N, Delijić K, Vukčević M, Uskoković D (2001) Zeitschrift für Metallkunde 92:145

    Google Scholar 

  15. Ignjatović N, Tomic S, Dakic M, Miljkovic M, Plavsic M, Uskokovic D (1999) Biomaterials 20:809

    Article  PubMed  Google Scholar 

  16. Ignjatović N, Sutjovrujic E, Budinski-Simendic J, Krakovski I, Uskokovic D (2004) J Biomed Mater Res B 71B:284

    Article  Google Scholar 

  17. Li X (2007) J Miner Met Mater Soc 59:71

    CAS  Google Scholar 

  18. Dupraz AMP, de Wijn JR, vd Meer SAT, de Groot K (1996) Biomed Mater Res 30:231

    Article  CAS  Google Scholar 

  19. D’Andrea SC, Fadeev AY (2003) Langmuir 19:7904

    Article  Google Scholar 

  20. Choi HW, Lee HJ, Kim KJ, Kim HM, Lee SC (2006) J Colloid Interface Sci 304:277

    Article  CAS  PubMed  Google Scholar 

  21. Hong Z, Zhang P, Liu A, Chen L, Chen X, Jing H (2007) Biomed Mater Res 81A:515

    Article  CAS  Google Scholar 

  22. Borum-Nicholas L, Wilson OC Jr (2003) Biomaterials 24:3671

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, de Wijn JR, van Blitterswijk CA (1998) Biomed Mater Res 40:358

    Article  CAS  Google Scholar 

  24. Liu Q, de Wijn JR, de Groot K, van Blitterswijk CA (1998) Biomaterials 19:1067

    Article  CAS  PubMed  Google Scholar 

  25. Gutmanas EY (1983) Powder Metall Int 15:129

    Google Scholar 

  26. Gutmanas EY (1998) Cold-sintering—high pressure consolidation. Powder metal technologies and applications. ASM International, Materials Park, OH

    Google Scholar 

  27. Bernstein M (2006) Msc Thesis, Technion

  28. Makarov C, Gotman I, Gutmanas EY (2007) In: Proceedings of 21th European conference on biomaterials (ESB 2007), Brighton, UK

  29. Siddharthan A, Seshadri SK, Sampath Kumar TS (2004) J Mater Sci Mater Med 15:1279

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa K, Ducheyne P, Radin S (1993) J Mater Sci Mater Med 4:165

    Article  CAS  Google Scholar 

  31. Bohner M (2000) Injury 31:S-D37

    Article  Google Scholar 

  32. Chen CW, Riman RE, TenHuisen KS, Brown K (2004) J Cryst Growth 270:615

    Article  CAS  ADS  Google Scholar 

  33. Dong GC, Sun JS, Yao CH, Jiang JG, Huang CW, Lin FH (2001) Biomaterials 22:3179

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The research was supported by U.S.-Israel Binational Science Foundation (BSF) through research grant No. 2004-293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gotman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakovsky, A., Gutmanas, E.Y. & Gotman, I. Ca-deficient hydroxyapatite/polylactide nanocomposites with chemically modified interfaces by high pressure consolidation at room temperature. J Mater Sci 45, 6339–6344 (2010). https://doi.org/10.1007/s10853-010-4543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4543-z

Keywords

Navigation