Skip to main content
Log in

Physiochemical characterizations of nanobelts consisting of three mixed oxides (Co3O4, CuO, and MnO2) prepared by electrospinning technique

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, nanobelt mats consisting of three potential metal oxides have been produced using the electrospinning technique. An aqueous solution of cobalt acetate tetra-hydrate, copper acetate mono-hydrate, and manganese acetate tetra-hydrate was mixed with poly(vinyl alcohol) solution to prepare a sol–gel which was electrospun at 20 kV. The obtained nanofiber mats have been vacuously dried at 80 °C for 24 h and then calcined in air atmosphere at different temperatures and soaking times. The utilized physiochemical characterizations have affirmed that nanobelts composed of three oxides (Co3O4, CuO, and MnO2) can be prepared by calcination at a temperature of 600 °C for 1 h. High-resolution transmission electron microscope and selected area electron pattern images revealed good crystallinity for the synthesized nanobelts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cavicchi RE, Silsbe RH (1984) Phys Rev Lett 52:1435. doi:https://doi.org/10.1103/PhysRevLett.52.1453

    Article  Google Scholar 

  2. Ball P, Li G (1992) Nature 355(6363):761. doi:https://doi.org/10.1038/355761a0

    Article  Google Scholar 

  3. Lieber CM (2003) MRS Bull 28(7):486

    Article  CAS  Google Scholar 

  4. Xia YN, Yang PD (2003) Adv Mater 15(5):351. doi:https://doi.org/10.1002/adma.200390086

    Article  CAS  Google Scholar 

  5. Sander MS, Prieto AL, Gronsky R, Sands T, Stacy AM (2002) Adv Mater 14(9):665. doi:10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B

    Article  CAS  Google Scholar 

  6. Dai HQ, Gong J, Kim HY, Lee D (2002) Nanotechnology 13(5):674. doi:https://doi.org/10.1088/0957-4484/13/5/327

    Article  CAS  Google Scholar 

  7. Dharmaraj N, Kim CK, Prabu P, Ding B, Kim HY, Viswanathamurthi P (2007) Int J Electrospun Nanofibers Appl 1(1):63

    Google Scholar 

  8. Yuh JH, Nino JC, Sigmund WM (2005) Mater Lett 59(28):3645. doi:https://doi.org/10.1016/j.matlet.2005.07.008

    Article  CAS  Google Scholar 

  9. Ju YW, Park JH, Jung HR, Choa SJ, Lee WJ (2008) Mater Sci Eng B 147(1):7. doi:https://doi.org/10.1016/j.mseb.2007.10.018

    Article  CAS  Google Scholar 

  10. Peng XS, Meng GW, Wang XF, Wang YW, Zhang J, Liu X et al (2002) Chem Mater 14(11):4490. doi:https://doi.org/10.1021/cm025567o

    Article  CAS  Google Scholar 

  11. Zhou XF, Zhao Y, Cao X, Xue YF, Xu DP, Jiang L et al (2008) Mater Lett 62(3):470. doi:https://doi.org/10.1016/j.matlet.2007.05.063

    Article  CAS  Google Scholar 

  12. Shaoa CL, Yua N, Liu YC, Mu RX (2006) J Phys Chem Solids 67(7):1423. doi:https://doi.org/10.1016/j.jpcs.2006.01.104

    Article  Google Scholar 

  13. Yu N, Shao CL, Liu YC, Guan HY, Yang XH (2005) J Colloid Interface Sci 285(1):163. doi:https://doi.org/10.1016/j.jcis.2004.11.014

    Article  CAS  Google Scholar 

  14. Yamaura H, Tamaki J, Moriya K, Miura N, Yamazoe N (1997) J Electrochem Soc 144(6):L158. doi:https://doi.org/10.1149/1.1837710

    Article  CAS  Google Scholar 

  15. Ando M, Kobayashi T, Lijima S, Haruta M (1997) J Mater Chem 7(9):1779. doi:https://doi.org/10.1039/a700125h

    Article  CAS  Google Scholar 

  16. Nkeng P, Koening J, Gautier J, Chartier P, Poillerat G (1996) J Electroanal Chem 402(1–2):81. doi:https://doi.org/10.1016/0022-0728(95)04254-7

    Article  Google Scholar 

  17. Weichel S, Moller P (1998) J Surf Sci 399(2–3):219. doi:https://doi.org/10.1016/S0039-6028(97)00820-0

    Article  CAS  Google Scholar 

  18. Burke LD, Lyons ME, Murphy OJ (1982) J Electroanal Chem 132:247. doi:https://doi.org/10.1016/0022-0728(82)85022-5

    Article  CAS  Google Scholar 

  19. Hutchins MG, Wright PJ, Grebenik PD (1987) Sol Energy Mater 16(1–3):113. doi:https://doi.org/10.1016/0165-1633(87)90013-X

    Article  CAS  Google Scholar 

  20. Ramachandram K, Oriakhi CO, Lerner MM, Koch VR (1996) Mater Res Bull 31(7):767. doi:https://doi.org/10.1016/0025-5408(96)00070-0

    Article  Google Scholar 

  21. Podhajecky P, Scrosati B (1985) J Power Sources 16(4):309. doi:https://doi.org/10.1016/0378-7753(85)80095-1

    Article  CAS  Google Scholar 

  22. Muhibbullah M, Hakim MO, Choudhury MGM (2003) Thin Solid Films 423(1):103. doi:https://doi.org/10.1016/S0040-6090(02)00970-7

    Article  CAS  Google Scholar 

  23. Ortiz JR, Ogura T, Medina-Valtierra J, Acosta-Ortiz SE, Bosh P, de los Reyes JA et al (2001) Appl Surf Sci 174(3–4):177. doi:https://doi.org/10.1016/S0169-4332(00)00822-9

    Article  Google Scholar 

  24. Kharas KCC (1993) Appl Catal B Environ 2(2–3):207. doi:https://doi.org/10.1016/0926-3373(93)80049-J

    Article  CAS  Google Scholar 

  25. Vasiliev RB, Rumyantseva MN, Yakovlev NV, Gaskov AM (1998) Sens Actuators B Chem 50(3):186. doi:https://doi.org/10.1016/S0925-4005(98)00235-4

    Article  CAS  Google Scholar 

  26. Nakamura Y, Zhuang H, Kishimoto A, Okada O, Yanagida H (1998) J Electrochem Soc 145:632. doi:https://doi.org/10.1149/1.1838315

    Article  CAS  Google Scholar 

  27. Kim DW, Park B, Chung JH, Hong KS (2000) Jpn J Appl Phys 39(5A):2696. doi:https://doi.org/10.1143/JJAP.39.2696

    Article  CAS  Google Scholar 

  28. Reddy RN, Reddy RG (2004) J Power Sources 132(1–2):315. doi:https://doi.org/10.1016/j.jpowsour.2003.12.054

    Article  CAS  Google Scholar 

  29. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16(16):3184. doi:https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  30. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109(43):20207. doi:https://doi.org/10.1021/jp0543330

    Article  CAS  Google Scholar 

  31. Chaudhary YS, Agrawal A, Shrivastav R, Satsangi VR, Dass S (2004) Int J Hydrogen Energy 29(2):131. doi:https://doi.org/10.1016/S0360-3199(03)00109-5

    Article  CAS  Google Scholar 

  32. Yoon KH, Choi WJ, Kang DH (2000) Thin Solid Films 372(1–2):250. doi:https://doi.org/10.1016/S0040-6090(00)01058-0

    Article  CAS  Google Scholar 

  33. Yamani Z, Buyers WJL, Cowley RA, Prabhakaran D (2008) Physica B 403(5–9):1406

    Article  CAS  Google Scholar 

  34. Li T, Yang SG, Huang LS, Gu BX, Du YW (2004) Nanotechnology 15(11):1479. doi:https://doi.org/10.1088/0957-4484/15/11/018

    Article  CAS  Google Scholar 

  35. Jiang Y, Wu Y, Xie B, Xie Y, Qian YT (2002) Mater Chem Phys 74(2):234. doi:https://doi.org/10.1016/S0254-0584(01)00463-1

    Article  CAS  Google Scholar 

  36. Afzal M, Butt PK, Ahrnad H (1991) J Therm Anal 37(5):1015. doi:https://doi.org/10.1007/BF01932799

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Korean Research Foundation Grant founded by Korean Government (MOEHRD). (The Center for Health Care Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A. et al. Physiochemical characterizations of nanobelts consisting of three mixed oxides (Co3O4, CuO, and MnO2) prepared by electrospinning technique. J Mater Sci 43, 5489–5494 (2008). https://doi.org/10.1007/s10853-008-2835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2835-3

Keywords

Navigation