Skip to main content
Log in

Charge-transport and photocurrent generation in bulk hetero junction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bulk-hetero junctions were made with the intermixing of Chloro-aluminum phthalocyanine (ClAlPc) (p-type) and Rose Bengal (RB) (n-type material) from the common solvent. The optical properties of blend reveal that light harvesting is possible from almost entire visible spectrum of the material. The devices were characterized by recording its JV in dark and under illumination and impedance analysis under various temperatures over wide frequency range, i.e., from 100 Hz to 1 MHz. Various photovoltaic parameters like open circuit voltage (V oc), short-circuit photocurrent (J sc), and fill factor were evaluated and found to be as 0.92 V and 0.44 mA/cm2 and 0.48, respectively. Also, the effect of thermal annealing on the optical, electrical, and photovoltaic properties of bulk heterojunction device was investigated. From the impedance spectroscopy, we conclude that the change in bulk resistance and dielectric constant of active layer due to the illumination has a direct relevance to the photocurrent generation by the device. The overall observation reveals that upon thermal annealing of the device imparts substantial increase in hole mobility which results in balanced charge transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Spanggaard H, Krebs FC (2004) Sol Energy Mater Sol Cells 83:125. doi:https://doi.org/10.1016/j.solmat.2004.02.021

    Article  CAS  Google Scholar 

  2. Sun SS, Sariciftci NS (2005) Organic photovoltaic mechanisms, materials, devices. CRC Pres, Boca Ration

  3. Hoppe H, Sariciftci NS, Meissner D (2002) Mol Crys Liq Crystallogr 385:113. doi:https://doi.org/10.1080/713738799

    Article  CAS  Google Scholar 

  4. Hoppe H, Sariciftci NS (2004) J Mater Chem 19:1924

    CAS  Google Scholar 

  5. Singh B, Sariciftci NS (2006) Annu Rev Mater Res 36:199. doi:https://doi.org/10.1146/annurev.matsci.36.022805.094757

    Article  CAS  Google Scholar 

  6. Krebs FC, Spanggard H (2005) Chem Mater 17:5235. doi:https://doi.org/10.1021/cm051320q

    Article  CAS  Google Scholar 

  7. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 15:1617. doi:https://doi.org/10.1002/adfm.200500211

    Article  CAS  Google Scholar 

  8. Wang XJ, Perzon E, Delgado JL, Dela Cruz P, Zeng FL, Langa F et al (2004) Appl Phys Lett 85:5081. doi:https://doi.org/10.1063/1.1825070

    Article  CAS  Google Scholar 

  9. Wang X, Perzon E, Oswald F, Langa F, Admassie S, Anderson MR et al (2005) Adv Funct Mater 15:1665. doi:https://doi.org/10.1002/adfm.200500114

    Article  CAS  Google Scholar 

  10. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Science 270:1789. doi:https://doi.org/10.1126/science.270.5243.1789

    Article  CAS  Google Scholar 

  11. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Morattia SC et al (1995) Nature 376:498. doi:https://doi.org/10.1038/376498a0

    Article  CAS  Google Scholar 

  12. Peumens P, Yakimov A, Forrest SR (2003) J Appl Phys 93:3693. doi:https://doi.org/10.1063/1.1534621

    Article  Google Scholar 

  13. Hong ZR, Lee CS, Lee ST, Li WL, Shirota Y (2002) Appl Phys Lett 81:2898

    Google Scholar 

  14. Rand BP, Xue J, Uchida S, Forrest SR (2005) J Appl Phys 98:124902. doi:https://doi.org/10.1063/1.2142072

    Article  Google Scholar 

  15. Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ et al (2006) Adv Mater 18:789. doi:https://doi.org/10.1002/adma.200501717

    Article  CAS  Google Scholar 

  16. Heggie DA, MacDonald BL, Hill IG (2006) J Appl Phys 100:104505. doi:https://doi.org/10.1063/1.2374694

    Article  Google Scholar 

  17. Bundaagd E, Frebs FC (2007) Sol Energy Mater Sol Cells 91:954. doi:https://doi.org/10.1016/j.solmat.2007.01.015

    Article  Google Scholar 

  18. Koeppe R, Bossart O, Calzaferri G, Sariciftci NS (2007) Sol Energy Mater Sol Cells 91:986. doi:https://doi.org/10.1016/j.solmat.2007.01.008

    Article  CAS  Google Scholar 

  19. Gunes S, Neugebaur H, Sariciftci NS (2007) Chem Rev 107:1324. doi:https://doi.org/10.1021/cr050149z

    Article  Google Scholar 

  20. Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) J Appl Phys 99:104503. doi:https://doi.org/10.1063/1.2198930

    Article  Google Scholar 

  21. Shin WS, Jeong HH, Kim MK, Jin SH, Kim MR, Lee JK et al (2006) J Mater Chem 16:384. doi:https://doi.org/10.1039/b512983d

    Article  CAS  Google Scholar 

  22. Padinger F, Rittberger R, Sariciftci NS (2003) Adv Funct Mater 13:85. doi:https://doi.org/10.1002/adfm.200390011

    Article  CAS  Google Scholar 

  23. Drees M, Premaratne K, Graupher W, Heflin JR, Devis RM, Marciu D, Miller M (2002) Appl Phys Lett 81:4607. doi:https://doi.org/10.1063/1.1522830

    Article  CAS  Google Scholar 

  24. Hiramoto M, Suegaki M, Yakoyama M (1990) Chem Lett 19:327. doi:https://doi.org/10.1246/cl.1990.327

    Article  Google Scholar 

  25. Suemori K, Miyata T, Yokoyama M, Hiramoto M (2005) Appl Phys Lett 86:063509. doi:https://doi.org/10.1063/1.1863451

    Article  Google Scholar 

  26. Uchida S, Xue J, Rand BP, Forrest SR (2004) Appl Phys Lett 84:4218. doi:https://doi.org/10.1063/1.1755833

    Article  CAS  Google Scholar 

  27. Schultes SM, Sullivan P, Heutz S, Sanderson M, Jones TJ (2005) Mater Sci Eng C 25:858. doi:https://doi.org/10.1016/j.msec.2005.06.039

    Article  Google Scholar 

  28. Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeifter M (2003) Sol Energy Mater Sol Cells 79:81. doi:https://doi.org/10.1016/S0927-0248(02)00369-0

    Article  CAS  Google Scholar 

  29. Chan MY, Lai SL, Fung MK, Lee CS, Lee ST (2007) Appl Phys Lett 90:023504. doi:https://doi.org/10.1063/1.2430783

    Article  Google Scholar 

  30. Balaban TS (2005) Acc Chem Res 38:612. doi:https://doi.org/10.1021/ar040211z

    Article  CAS  Google Scholar 

  31. Wasielewski MS (1992) Chem Rev 92:435

    Article  CAS  Google Scholar 

  32. Harriman A, Sauvage JP (1993) Chem Soc Rev 25:198

    Google Scholar 

  33. Choi MS, Yamazaki T, Yamazaki I, Aida T (2004) Angew Chem Int Ed 43:150. doi:https://doi.org/10.1002/anie.200301665

    Article  CAS  Google Scholar 

  34. De la Torre G, Nicolau M, Torres T (2001) In: Nalwa HS (ed) Phthalocyanines, synthesis, supramolecular organization and physical properties. Academic Press, New York

    Google Scholar 

  35. De la Torre G, Vazquez P, Agullo-Lopez F, Torres T (2004) Chem Rev 104:3723. doi:https://doi.org/10.1021/cr030206t

    Article  Google Scholar 

  36. Gouloumis A, Liu SG, Vazquez P, Echegoyen L, Torres T (2001) Chem Commun 399

  37. de la Escoura A, Martinez-Diaz MV, Guldi DM, Torres T (2006) J Am Chem Soc 128:4112. doi:https://doi.org/10.1021/ja058123c

    Article  Google Scholar 

  38. Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger AJ (1999) Synth Met 99:243. doi:https://doi.org/10.1016/S0379-6779(99)00007-7

    Article  CAS  Google Scholar 

  39. Kulkarni AP, Wu PT, Kwon TW, Jenekhe SA (2005) J Phys Chem B 109:19584. doi:https://doi.org/10.1021/jp0529772

    Article  CAS  Google Scholar 

  40. Richler MM, Fan FF, Klavettler F, Heeger AJ, Bard AJ (1994) Chem Phys Lett 226:115. doi:https://doi.org/10.1016/0009-2614(94)00716-0

    Article  Google Scholar 

  41. Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2003) Nano Lett 2:1353. doi:https://doi.org/10.1021/nl0257418

    Article  Google Scholar 

  42. Barth S, Bassler H (1997) Phys Rev Lett 79:4445. doi:https://doi.org/10.1103/PhysRevLett.79.4445

    Article  CAS  Google Scholar 

  43. Brabec CJ, Cravino A, Zerza G, Sariciftci NS, Kiebooms R, Vanderzande D et al (2001) J Phys Chem B 105:1528. doi:https://doi.org/10.1021/jp003407z

    Article  CAS  Google Scholar 

  44. Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4917. doi:https://doi.org/10.1021/cr040084k

    Article  Google Scholar 

  45. Borsenberger PM, Contois LE, Hoesterey DC (1978) J Chem Phys 68:637. doi:https://doi.org/10.1063/1.435731

    Article  CAS  Google Scholar 

  46. Chance RR, Braun CL (1976) J Chem Phys 64:3573. doi:https://doi.org/10.1063/1.432707

    Article  CAS  Google Scholar 

  47. Herlel D, Soh EV, Bassler H, Rothberg LJ (2002) Chem Phys Lett 361:99. doi:https://doi.org/10.1016/S0009-2614(02)00898-9

    Article  Google Scholar 

  48. Goodman AM, Rose A (1971) J Appl Phys 42:2823. doi:https://doi.org/10.1063/1.1660633

    Article  CAS  Google Scholar 

  49. Sokel R, Hughes RC (1982) J Appl Phys 53:7414. doi:https://doi.org/10.1063/1.330111

    Article  CAS  Google Scholar 

  50. Katz EA, Faiman D, Tuladhar SM, Kroon JM, Wienk MM, Fromhertz T et al (2001) J Appl Phys 90:5343. doi:https://doi.org/10.1063/1.1412270

    Article  CAS  Google Scholar 

  51. Schilinsky P, Waldauf C, Hausch J, Brabec CJ (2004) J Appl Phys 95:2816. doi:https://doi.org/10.1063/1.1646435

    Article  CAS  Google Scholar 

  52. Barker JA, Ramadale CM, Greenham NC (2003) Phys Rev B 67:075205. doi:https://doi.org/10.1103/PhysRevB.67.075205

    Article  Google Scholar 

  53. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15. doi :10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

    Article  CAS  Google Scholar 

  54. Bassler H (1993) Phys Status Solidi B 175:15. doi:https://doi.org/10.1002/pssb.2221750102

    Article  Google Scholar 

  55. Koster LJA, Smits ECP, Michailetchi VD, Blom PWM (2005) Phys Rev B 72:085205. doi:https://doi.org/10.1103/PhysRevB.72.085205

    Article  Google Scholar 

  56. Blom PWM, Michailetchi VD, Koster LJA, Markov DE (2007) Adv Mater 19:1551. doi:https://doi.org/10.1002/adma.200601093

    Article  CAS  Google Scholar 

  57. Sharma GD (1995) Synth Met 74:227. doi:https://doi.org/10.1016/0379-6779(95)03360-V

    Article  CAS  Google Scholar 

  58. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Phys Rev Lett 93:216601. doi:https://doi.org/10.1103/PhysRevLett.93.216601

    Article  CAS  Google Scholar 

  59. Mihailetchi VD, Koster LJA, Blom PWM, Meizer C, De Boer B, van Duren JKJ et al (2005) Adv Funct Mater 15:795. doi:https://doi.org/10.1002/adfm.200400345

    Article  CAS  Google Scholar 

  60. Meizer C, Koop EJ, Mihailetchi VD, Blom PWM (2004) Adv Funct Mater 14:865. doi:https://doi.org/10.1002/adfm.200305156

    Article  Google Scholar 

  61. Goh C, Kline RJ, McGhee MD, Kadnikova EN, Frechet JMJ (2005) Appl Phys Lett 86:122110. doi:https://doi.org/10.1063/1.1891301

    Article  Google Scholar 

  62. Murgatroyd PN (1970) J Phys D 3:151. doi:https://doi.org/10.1088/0022-3727/3/2/308

    Article  Google Scholar 

  63. Mihailetchi VD, Wildeman J, Bolm PWM (2005) Phys Rev Lett 94:126602. doi:https://doi.org/10.1103/PhysRevLett.94.126602

Download references

Acknowledgement

We are grateful to Council for Scientific and Industrial Research for financial support through project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Sharma.

Additional information

G. D. Sharma—on sabbatical leave from JNV Unuiversity, Jodhpur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M.S., Balraju, P., Deol, Y.S. et al. Charge-transport and photocurrent generation in bulk hetero junction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB). J Mater Sci 43, 5551–5563 (2008). https://doi.org/10.1007/s10853-008-2822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2822-8

Keywords

Navigation