Skip to main content
Log in

High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glass fiber polymer composites have high strength, low cost, but suffer from poor performance in fatigue. Mechanisms for high-cycle (>104 cycles) fatigue failure in glass fiber composites consist primarily of matrix-dominated damage accumulation and growth that coalesce and propagate into the fibers resulting in ultimate fatigue failure. This investigation shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) in the matrix results in a significant increase in the high-cycle fatigue life. Cyclic hysteresis measured over each cycle in real time during testing is used as a sensitive indicator of fatigue damage. We show that hysteresis growth with cycling is suppressed when CNTs are present with resulting longer cyclic life. Incorporating CNTs into the matrix tends to inhibit the formation of large cracks since a large density of nucleation sites are provided by the CNTs. In addition, the increase in energy absorption from the fracture of nanotubes bridging across nanoscale cracks and nanotube pull-out from the matrix is thought to contribute to the higher fatigue life of glass composites containing CNTs. High-resolution scanning electron microscopy suggests possible mechanisms for energy absorption including nanotube pull-out and fracture. The distributed nanotubes in the matrix appear to inhibit damage propagation resulting in overall improved fatigue strength and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dharan CKH (1975) ASTM Spec Tech Publ 569:171

    Google Scholar 

  2. Dharan CKH (1975) J Mater Sci 10:1655. doi:https://doi.org/10.1007/BF00554927

    Article  Google Scholar 

  3. Hahn HT, Kim RY (1976) J Compos Mater 10:156. doi:https://doi.org/10.1177/002199837601000205

    Article  Google Scholar 

  4. Degrieck J, Van Paepegem W (2001) Appl Mech Rev 54(4):279. doi:https://doi.org/10.1115/1.1381395

    Article  Google Scholar 

  5. Saghizadeh H, Dharan CKH (1986) J Eng Mater Technol: Trans ASME 108(4):290

    Article  CAS  Google Scholar 

  6. Ren Y, Li F, Cheng HM, Liao K (2003) Adv Compos Lett 12(1):19

    Google Scholar 

  7. Ganguli S, Aglan H (2006) J Reinforc Plast Compos 25(2):175. doi:https://doi.org/10.1177/0731684405056425

    Article  CAS  Google Scholar 

  8. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Composites A 36:1525. doi:https://doi.org/10.1016/j.compositesa.2005.02.007

    Article  Google Scholar 

  9. Kim JA, Seong DG, Kang TJ, Youn JR (2006) Carbon 44:1898. doi:https://doi.org/10.1016/j.carbon.2006.02.026

    Article  CAS  Google Scholar 

  10. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Polymer 44(25):7757. doi:https://doi.org/10.1016/j.polymer.2003.10.011

    Article  CAS  Google Scholar 

  11. Wang SS, Chim ES-M (1983) J Compos Mater 17:114. doi:https://doi.org/10.1177/002199838301700203

    Article  CAS  Google Scholar 

  12. Stinchcomb WW, Reifsnider KL (1979) ASTM Spec Tech Publ 675:782

    Google Scholar 

  13. Owen MJ, Howe RJ (1972) J Phys D App Phys 5(9):1637

    Article  CAS  Google Scholar 

  14. Dharan CKH, Tan TF (2007) J Mater Sci 42(6):2204. doi:https://doi.org/10.1007/s10853-007-1498-9

    Article  CAS  Google Scholar 

  15. Fan Z, Hsiao KT, Advani SG (2004) Carbon 42:871. doi:https://doi.org/10.1016/j.carbon.2004.01.067

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant from Entropy Research Laboratories, San Francisco, California, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. H. Dharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimmer, C.S., Dharan, C.K.H. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J Mater Sci 43, 4487–4492 (2008). https://doi.org/10.1007/s10853-008-2651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2651-9

Keywords

Navigation