Skip to main content

Advertisement

Log in

The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites

  • Commonality of Phenomena in Composite Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of molybdenum (Mo) on the microstructure and creep behavior of nominally Ti–24Al–17Nb (at.%) alloys and their continuously reinforced SiC-fiber composites (fiber volume fraction = 0.35) was investigated. Constant-load, tensile-creep experiments were performed in the stress range of 10–275 MPa at 650 °C in air. A Ti–24Al–17Nb–2.3Mo (at.%) alloy exhibited significantly greater creep resistance than a Ti–24Al–17Nb–0.66Mo (at.%) alloy, and correspondingly a 90°-oriented Ultra SCS-6/Ti–24Al–17Nb–2.3Mo metal matrix composite (MMC) exhibited significantly greater creep resistance than an Ultra SCS-6/Ti–24Al–17Nb–0.66Mo MMC. Thus, the addition of 2.3 at.% Mo significantly improved the creep resistance of both the alloy and the MMC. An Ultra SCS-6 Ti–25Al–17Nb–1.1Mo (at.%) MMC exhibited creep resistance similar to that of the Ultra SCS-6/Ti–25Al–17Nb–2.3Mo (at.%). Using a modified Crossman model, the MMC secondary creep rates were predicted from the monolithic matrix alloys’ secondary creep rates. For identical creep temperatures and applied stresses, the 90°-oriented MMCs exhibited greater creep rates than their monolithic matrix alloy counterparts. This was explained to be a result of the low interfacial bond strength between the matrix and the fiber, measured using a cruciform test methodology, and was in agreement with the modified Crossman model. Scanning electron microscopy observations indicated that debonding occurred within the carbon layers of the fiber-matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. All alloy compositions are given in atomic percent unless depicted otherwise.

References

  1. Jansson S, Dève HE, Evans AG (1991) Metall Trans 22A:2975

    Article  CAS  Google Scholar 

  2. Larsen JM, Russ SM, Jones JW (1995) Metall Mater Trans 26A:3211

    Article  CAS  Google Scholar 

  3. Russ SM, Larsen JM, Smith PR (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 162–183

  4. Rosenberger AH, Smith PR, Russ SM (1997) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 198–211

  5. Krishnamurthy S, Smith PR, Miracle DB (1998) Mater Sci Eng A243:285

    Article  CAS  Google Scholar 

  6. Carrère N, Kruch S, Vassel A, Chaboche J-L (2002) Int J Damage Mech 11:41

    Article  Google Scholar 

  7. Majumdar BS (1997) In: Mall S, Nicholas T (eds) Titanium matrix composites. Technomic Publications, Lancaster, pp 113–168

  8. Smith PR, Graves JA, Rhodes CG (1994) Metall Mater Trans 25A:1267

    Article  CAS  Google Scholar 

  9. Feillard P (1996) Acta Metall 44(2):643

    CAS  Google Scholar 

  10. Ghosh S, Ling Y, Majumdar B, Kim R (2000) Mech Mater 32:561

    Article  Google Scholar 

  11. Miracle DB, Majumdar BS (1999) Metall Mater Trans A30:301

    Article  Google Scholar 

  12. Chatterjee A, Roessler JR, Brown LE, Heitman PW, Richardson GE (1997) In: Nathal MV, Darolia R, Liu CT, Martin PL, Miracle DB, Wagner R, Yamaguchi M (eds) Proceedings of the second international symposium on structural intermetallics. TMS, pp 905–911

  13. Majumdar BS (1999) Mater Sci Eng A259:171

    Article  CAS  Google Scholar 

  14. Quast JP, Boehlert CJ (2006) Metall Mater Trans 38A:529

    Google Scholar 

  15. Krishnamurthy S, James MR, Smith PR, Miracle DB (1995) In: Poursartip A, Street KN (eds) Proceedings from the 10th international conference of composite materials. Woodhead Publishing Ltd., Vancouver, pp 739–746

  16. Smith PR, Graves JA (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95–4068, Wright-Patterson Air Force Base, OH, pp 139–149

  17. Krishnamurthy S, Smith PR, Miracle DB (1995) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 83–104

  18. Zhang JW, Lee CS, Zou DX, Li SQ, Lai JKL (1998) Metall Mater Trans 29A:559

    Article  CAS  Google Scholar 

  19. Majumdar BS, Grundel DB, Dutton RE, Warrier SG, Pagano NJ (1998) J Am Ceram Soc 81(6):1600

    Article  CAS  Google Scholar 

  20. Boehlert CJ, Majumdar BS, Miracle DB (2001) Metall Mater Trans 32A:3143

    Article  CAS  Google Scholar 

  21. Warrier SG, Majumdar BS, Miracle DB (1997) Acta Mater 45(12):4969

    Article  CAS  Google Scholar 

  22. Gundel DB, Majumdar BS, Miracle DB (1995) In: Poursartip A, Street KN (eds) Proceedings of the tenth international conference on composite materials. Woodhead Publishing, Ltd., Cambridge, UK, pp 703–710

  23. Gundel DB, Majumdar BS, Miracle DB (1995) Scr Metall Mater 33:2057

    Article  CAS  Google Scholar 

  24. Warrier SG, Gundel DB, Majumdar BS, Miracle DB (1996) Metall Mater Trans 27A:2035

    Article  CAS  Google Scholar 

  25. Gundel DB, Miracle DB, (1998) Compos Sci Technol 58:1571

    Article  CAS  Google Scholar 

  26. Gundel DB, Warrier SG, Miracle DB (1997) Acta Mater 45(3):1275

    Article  CAS  Google Scholar 

  27. Warrier SG, Gundel DB, Majumdar BS, Miracle DB (1996) Scr Metall 34(2):293

    Article  CAS  Google Scholar 

  28. Crossman FW, Karlak RF, Barnett DM (1974) In: Fleck JN, Mehan RL (eds) AIME symposium proceedings, TMS, pp 8–31

  29. Smith PR, Gambone ML, Williams DS, Garner DI (1997) In: Proceedings from orthorhombic titanium matrix composite workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 1–28

  30. Rosenberger AH, Smith PR, Russ SM (1997) In: Proceedings from orthorhombic titanium matrix composites workshop, WL-TR-97-4082, Wright-Patterson Air Force Base, OH, pp 198–211

  31. Niemann JT, Edd JF (1991) In: Proceedings from titanium aluminide composite workshop, WL-TR-91-4020, Wright-Patterson Air Force Base, OH, pp 300–314

  32. Smith PR, Porter WJ (1997) J Mater Sci 32:6215

    Article  CAS  Google Scholar 

  33. Boehlert CJ, Majumdar BS, Krishnamurthy S, Miracle DB (1997) Metall Mater Trans 28A:309

    Article  CAS  Google Scholar 

  34. Hartman GA, Russ SM (1989) In: Johnson WS (ed) Metal matrix composites: testing, analysis and failure modes. American Society for Testing and Materials, Philadelphia, pp 43–53

  35. Boehlert CJ, Cowen CJ, Tamirisakandala S, McEldowney DJ, Miracle DB (2006) Scr Mater 55:465

    Article  CAS  Google Scholar 

  36. Pearson K (1896) Philos Trans R Soc Lond Ser A 187:253

    Article  Google Scholar 

  37. Smith PR, Rosenberger A, Shepard MJ, Wheeler R (2000) J Mater Sci 35:3169. doi:https://doi.org/10.1023/A:1004833629778

    Article  CAS  Google Scholar 

  38. Rhodes CG, Smith PR, Hanusiak WH, Shephard MJ (2000) Metall Mater Trans 31A:2931

    Article  CAS  Google Scholar 

  39. Smith PR, Rosenberger A, Shepard MJ (1999) Scr Metall 41(2):221

    Article  CAS  Google Scholar 

  40. Krishnamurhty S, Miracle DB (1997) In: Scott ML (ed) Proceedings of the 11th international conference on composite materials (ICCM-11), vol 3. Woodhead Publishing, Cambridge, pp 399–408

  41. Majumdar BS, Boehlert CJ, Miracle DB (1995) In: Proceedings of the orthorhombic titanium matrix composites workshop, WL-TR-95-4068, Wright-Patterson Air Force Base, OH, pp 65–82

  42. Morscher G, Pirouz P, Heuer H (1990) J Am Cer Soc 73(3):713

    Article  CAS  Google Scholar 

  43. Warrier SG, Majumdar BS, Gundel DB, Miracle DB (1997) Acta Metall 45(8):3469

    CAS  Google Scholar 

  44. Hall EC, Ritter AM (1993) J Mater Res 8(5):1158

    Article  CAS  Google Scholar 

  45. Wu X, Cooper C, Bowen P (2001) Metall Mater Trans 32A:1851

    Article  CAS  Google Scholar 

  46. Wu X, Mori H, Bowen P (2001) Metall Mater Trans 32A:1841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Michael Shepard (Air Force Research Laboratory) and Mr. Paul Smith for their guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Boehlert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quast, J.P., Boehlert, C.J. The effect of molybdenum on the microstructure and creep behavior of Ti–24Al–17Nb–xMo alloys and Ti–24Al–17Nb–xMo SiC-fiber composites. J Mater Sci 43, 4411–4422 (2008). https://doi.org/10.1007/s10853-008-2582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2582-5

Keywords

Navigation