Skip to main content

Advertisement

Log in

Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical behavior of aqueous processing lithium cobalt oxide (LiCoO2) cathodes used hydrogen peroxide (H2O2)-treated vapor-grown carbon fibers (VGCFs) as a conductive agent for lithium-ion batteries has been investigated and improved. The sedimentation experiments show that the dispersibility in water of H2O2-treated VGCFs is better than that of KS-6 (flaky graphite) or as-received VGCFs. This improvement is due to the surface chemistry of H2O2-treated VGCFs has become more hydrophilic that was evidenced by its significant shift of iso-electric point (I.E.P) from pH 6.7 to 5.0. As a result, the H2O2-treated VGCFs can be well-dispersed in the LiCoO2 electrode which was observed by scanning electron microscope. Furthermore, the rate capability results of electrodes show that addition with H2O2-treated VGCFs has better performance than that with KS-6 or as-received VGCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dey AN, Sulliva BP (1970) J Electrochem Soc 117:222

    Article  CAS  Google Scholar 

  2. Wolverton C, Zunger A (1998) J Electrochem Soc 145:2424

    Article  CAS  Google Scholar 

  3. Cheon SE, Kwon CW, Kim DB, Hong SJ, Kim HT, Kim SW (2000) Electrochim Acta 46:599

    Article  CAS  Google Scholar 

  4. Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO (2001) J Power Sources 101:1

    Article  CAS  Google Scholar 

  5. Liu Z, Yu A, Lee JY (1998) J Power Sources 74:228

    Article  CAS  Google Scholar 

  6. Kim KM, Jeon WS, Chung IJ, Chang SH (1999) J Power Sources 83:108

    Article  CAS  Google Scholar 

  7. Kosova N, Devyatkina E, Osintsey D (2004) J Mater Sci 39:5031

    Article  CAS  Google Scholar 

  8. Kim J, Kim B, Lee JG, Cho J, Park B (2005) J Power Sources 139:289

    Article  CAS  Google Scholar 

  9. Li CC, Lee JT, Lo CY, Wu MS (2005) Electrochem Solid State Lett 8:A509

    Article  CAS  Google Scholar 

  10. Li CC, Lee JT, Peng XW (2006) J Electrochem Soc 153:A809

    Article  CAS  Google Scholar 

  11. Yang HQ, Li DP, Han S, Li N, Lin BX (1995) J Power Sources 58:221

    Article  Google Scholar 

  12. Saekil S, Lee J, Zhang Q, Saito F (2004) Int J Miner Process 74S:S373

    Article  Google Scholar 

  13. Nahass P, Rhine WE, Pober RL, Bowen HK, Robbins WL (1990) In: Nair KM, Pohanka R, Buchanan RC (eds) Ceramic transactions, vol 15. American Ceramic Society, Westerville, p 355

    Google Scholar 

  14. Endo M, Kim YA, Takeda T, Hong SH, Matusita T, Hayashi T, Dresselhaus MS (2001) Carbon 39:1287

    Article  CAS  Google Scholar 

  15. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Electrochem Soc 152:A1499

    Article  CAS  Google Scholar 

  16. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) J Power Sources 146:711

    Article  CAS  Google Scholar 

  17. Her LJ, Hong JL, Chang CC (2006) J Power Sources 157:457

    Article  CAS  Google Scholar 

  18. Liu J, Rinzler AG, Dai HJ, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  19. Jia Z, Wang Z, Liang J, Wei B, Wu D (1999) Carbon 37:903

    Article  CAS  Google Scholar 

  20. Saito T, Matsushige K, Tanaka K (2002) Physica B 323:280

    Article  CAS  Google Scholar 

  21. Wang Y, Wu J, Wei F (2003) Carbon 41:2939

    Article  CAS  Google Scholar 

  22. Hilding J, Grulke EA, Zhang ZG, Lockwood F (2003) J Disper Sci Technol 24:1

    Article  CAS  Google Scholar 

  23. Hirsch A (2002) Angew Chem Int Ed 41:1853

    Article  CAS  Google Scholar 

  24. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Adv Mater 11:834

    Article  CAS  Google Scholar 

  25. Li CC, Lin JL, Huang SJ, Lee JT, Chen CH (2007) Colloids Surf A 297:275

    Article  CAS  Google Scholar 

  26. Goto H, Furuta T, Fujiwara Y, Ohashi T (2003) US patent 20030007924A1

  27. Hernadi K, Siska A, Thien-Nga L, Forrob L, Kiricsi I (2001) Solid State Ionics 141:203

    Article  Google Scholar 

  28. Gil A, de la Puente G, Grange P (1997) Microporous Mater 12:51

    Article  CAS  Google Scholar 

  29. Concheso A, Santamaría R, Menéndez R, Jiménez-Mateos JM, Alcántara R, Lavela P, Tirado JL (2006) Electrochim Acta 52:1281

    Article  CAS  Google Scholar 

  30. Xing Y, Li L, Chusuei CC, Hull RV (2005) Langmuir 21:4185

    Article  CAS  Google Scholar 

  31. Hontora-Lucas C, Lopez-Peinado AJ, Lopez-Gonzales JD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Carbon 33:1585

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the National Science Council of the Republic of China under Grant No: NSC 95-2221-E-027-034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JT., Chu, YJ., Wang, FM. et al. Aqueous processing of lithium-ion battery cathodes using hydrogen peroxide-treated vapor-grown carbon fibers for improvement of electrochemical properties. J Mater Sci 42, 10118–10123 (2007). https://doi.org/10.1007/s10853-007-2068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2068-x

Keywords

Navigation