Skip to main content
Log in

Ab initio study on fracture toughness of Ti0.75X0.25C ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ab initio density functional theory calculations have been performed to evaluate the fracture toughness for selected Ti0.75X0.25C ceramics (X = Ta, W, Mo, Nb and V). The calculated Young’s modulus E, surface energy γ and fracture toughness K IC of pure TiC are in a good agreement with experimental data and other theoretical calculations. The results for Ti0.75X0.25C system show that alloying additions increase Young’s modulus, and all but vanadium increase surface energy. It was observed that tungsten has the most significant effect on increasing Young’s modulus, while tantalum on increasing surface energy of the Ti0.75X0.25C system. Surface energy plays a dominated role in determining the trend of fracture toughness. Overall, tantalum and tungsten are the most effective alloying elements in increasing the fracture toughness of Ti0.75X0.25C ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paramesvaran VR, Immarigeon JP, Nagy D (1992) Surf Coat Technol 52:251

    Article  Google Scholar 

  2. Paramesvaran VR, Nagy D, Immarigeon JP, Chow D, Morphy D (1994) In: Koul AK, Paramesvaran VR, Immarigeon JP, Wallace W (eds) Advances in high temperature structural materials and protective coatings. Publication from National Research Council of Canada, Ottawa, pp 262–281

    Google Scholar 

  3. Tabakoff W (1999) Wear 233–235:200

    Article  Google Scholar 

  4. Klein M, Simpson G (2004) In: Proc. ASME Turbo Expo 2004, Vienna, Austria, pp 1–6

  5. Evans AG (1979) In: Preece CM (ed) Treatise on materials science and technology, vol 16 erosion. Academic Press, NY, pp 1–67

    Google Scholar 

  6. Ruff W, Wiederhorn SM (1979) In: Preece CM (ed) Treatise on materials science and technology, vol 16 erosion. Academic Press, NY, pp 69–126

  7. Kresse G, Furthmuller J (1996) Comput Math Sci 6:15

    Article  CAS  Google Scholar 

  8. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  9. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  10. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  11. Boettger JC (1994) Phys Rev B 49:16798

    Article  CAS  Google Scholar 

  12. Ohring M (1992) The materials science of thin films. Academic Press, pp 568–570

  13. Warren R (1978) Acta Metallur 26:1759

    Article  CAS  Google Scholar 

  14. Maerky C, Guillou M-O, Henshall JL, Hooper RM (1996) Mater Sci Eng A 209:329

    Article  Google Scholar 

  15. Ahuja R, Eriksson O, Wills JM, Johansson B (1996) Phys Rev B 53:3072

    Article  CAS  Google Scholar 

  16. Choy MM, Cook WR, Hearmon RFS, Jaffe H, Jerphagnon J, Kurtz SK, Liu T, Nelson DF (1979) In: Hellwege K-H, Hellwege AM (eds) Elastic, piezoelectric, ryoelectric, piezooptic, electrooptic constants and nonlinear dielectric susceptibilities of crystals. Springer-Verlag, Berlin

  17. Dudiy SV, Lundqvist BI (2001) Phys Rev B 64:45403

    Article  Google Scholar 

  18. Arya A, Carter EA (2003) J Chem Phys 118:8982

    Article  CAS  Google Scholar 

  19. Haines J, Leger JM, Bocquillon G (2001) Annu Rev Mater Res 31:1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was performed thanks to the New Initiative Fund from the Institute for Aerospace Research of the National Research Council Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuiying Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Bielawski, M. Ab initio study on fracture toughness of Ti0.75X0.25C ceramics. J Mater Sci 42, 9713–9716 (2007). https://doi.org/10.1007/s10853-007-1930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1930-1

Keywords

Navigation