Skip to main content
Log in

Comparison of glide mechanisms in hcp Ti and Ti3Al

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Several dislocation glide mechanisms are studied in Ti and Ti3Al by means of in situ straining experiments in a transmission electron microscope at various temperatures. The prismatic glide of α titanium occurs by the jerky motion of straight screw a-dislocations subjected to a frictional force. An explanation for the discontinuity in the temperature dependence of the corresponding activation area is proposed, on the basis of the experimentally measured variation of the corresponding dislocation jump length. In Ti3Al, superlattice 2a-dislocations exhibit two different dissociation modes in prismatic planes corresponding to highly different antiphase boundary energies. The properties of these two types of dislocation are compared and discussed. It is shown that the motion of 2c+a superlattice dislocations in pyramidal planes is controlled by a new mechanism: the self-nucleation of small-size obstacles as the result of irreversible atomic displacements. The tension/compression asymmetry observed between type 1 and type 2 pyramidal planes is finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Couret, D. Caillard, W. Püschl and G. Schoeck, Phil. Mag. A 63 (1991) 1045.

    Google Scholar 

  2. H. Numakura and M. Koiwa, Metal. Sci. Tech. 16 (1998) 4.

    CAS  Google Scholar 

  3. A. Couret, J. Crestou, S. Farenc, G. Molénat, N. Clément, A. Coujou and D. Caillard, Microsc. Microanal. Microstruct. 4 (1993) 153.

    CAS  Google Scholar 

  4. F. Pettinari, A. Couret, D. Caillard, G. Molénat, N. Clément and A. Coujou, J. Microsc. 203 (2001) 47.

    Article  CAS  Google Scholar 

  5. M. P. Biget and G. Saada, Phil. Mag. A 59 (1989) 747.

    CAS  Google Scholar 

  6. S. Naka, A. Lasalmonie, P. Costa and L. P. Kubin, ibid. 57 (1991) 717.

    Google Scholar 

  7. S. Farenc, D. Caillard and A. Couret, Acta Metall. Mater. 41 (1993) 2701.

    Article  CAS  Google Scholar 

  8. S. Farenc, D. Caillard and A. Couret, ibid. 43 (1995) 3669.

    Article  CAS  Google Scholar 

  9. B. Legrand, Phil. Mag. A 52 (1985) 83.

    CAS  Google Scholar 

  10. A. Girshick, D. G. Pettifor and V. Vitek, ibid. 77 (1998) 999.

    Article  CAS  Google Scholar 

  11. V. Vitek and M. Igarashi, ibid. 63 (1991) 1059.

    Google Scholar 

  12. A. Couret and D. Caillard, ibid. 59 (1989) 783.

    CAS  Google Scholar 

  13. D. Caillard and A. Couret, Mat. Sci. Eng. A322 (2002) 108.

    CAS  Google Scholar 

  14. D. Caillard and J. L. Martin, “Thermally Activated Dislocation Mechanisms in Crystal Plasticity,” edited by R. W. Cahn (Pergamon Materials Series, 2003).

  15. M. Legros, A. Couret and D. Caillard, Phil. Mag. A 73 (1996) 61.

    CAS  Google Scholar 

  16. M. Legros, A. Couret and D. Caillard, ibid. 73 (1996) 81.

    CAS  Google Scholar 

  17. M. J. Blackburn, Trans. Metall. Soc. AIME 239 (1967) 660.

    CAS  Google Scholar 

  18. Y. Umakoshi and M. Yamaguchi, Phys. Stat. Sol. (a) 68 (1981) 457.

    CAS  Google Scholar 

  19. J. Cserti, M. Khanta, V. Vitek and D. P. Pope, Mater. Sci. Eng. A 152 (1992) 95.

    Article  Google Scholar 

  20. M. Legros and D. Caillard, J. Microsc. 203 (2001) 90.

    Article  CAS  Google Scholar 

  21. M. Legros, Thèse no 1739, Université Paul Sabatier, 1994.

  22. M. Legros, Y. Minonishi and D. Caillard, Phil. Mag. A 76 (1997) 995.

    CAS  Google Scholar 

  23. Idem., ibid. 76 (1997) 1013.

    CAS  Google Scholar 

  24. Y. Minonishi, M. Legros and D. Caillard, MRS Symp. Proc. 460 (1997) 237.

    CAS  Google Scholar 

  25. K. Kishida, J. Yoshikawa, H. Inui and M. Yamaguchi, Acta Metall. Mater. 47 (1999) 3405.

    CAS  Google Scholar 

  26. A. Kelly and G. W. Groves, “Crystallography and Crystal Defects” (Longman, London, 1970) p. 174.

    Google Scholar 

  27. Y. Minonishi, S. Ishioka, M. Koiwa and S. Morozumi, Phil. Mag. A 46 (1982) 761.

    CAS  Google Scholar 

  28. Y. Minonishi, S. Morozumi and H. Yoshinaga, Scripta Met. 16 (1982) 427.

    Article  CAS  Google Scholar 

  29. S. A. Court, J. P. A. Lofvander, M. H. Loretto and H. L. Fraser, Phil. Mag. A 61 (1990) 109.

    CAS  Google Scholar 

  30. J. A. Horton, I. Baker and M. H. Yoo, ibid. 63 (1991) 319.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legros, M., Couret, A. & Caillard, D. Comparison of glide mechanisms in hcp Ti and Ti3Al. J Mater Sci 41, 2647–2657 (2006). https://doi.org/10.1007/s10853-006-7828-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7828-5

Keywords

Navigation