Skip to main content
Log in

Semi-empirical AM1 calculations on 6-memebered alumino-silicate rings model: implications for dissolution process of metakaoline in alkaline solutions

  • Advances in Geopolymer Science & Technology
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to investigate the dissolution process of metakaline in alkaline solutions, two 6-memebered rings models consisting of AlO4 tetrahedron and SiO4 tetrahedron, respectively are firstly proposed to represent the structure of metakaoline in this paper. Analysis of the dissolution mechanism of the two 6-memebered rings models in strongly solution reveals that the dissolution process of metakaoline is composed of ring breakage for releasing HOTO 3 anion, formation of HO–T(OM)3 by ion-pairing reaction between HOTO 3 anion and M+ cation, and further interaction between the remaining broken ring cluster and MOH solutions. A computational chemistry method: Semi-empirical AM1 calculation is then conducted on the two models to obtain the details of three steps involved in dissolution process. The calculated results showed that 6-member ring model consisting of AlO4 tetrahedron is more reactive than 6-member ring model consisting of SiO4 tetrahedron. Compared with local environment, strongly alkaline accelerated the dissolution of 6-member ring model consisting of SiO4 tetrahedron. Na+ has stronger ion-pairing interaction than K+. The further reaction between the remaining broken ring cluster and strongly alkaline solution depended on the types of the remaining broken ring cluster and alkaline solution. The above results enhanced our understanding of dissolution mechanisms of metakaoline in highly alkaline solutions, which is especially important to geopolymerization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davidovits J (1991) J Thermal Anal 37(8):1633

    Article  CAS  Google Scholar 

  2. van Jaarsveld JGS, van Deventer JSJ, Lorenzen L (1997) Minerals Eng 10(7):659

    Article  Google Scholar 

  3. Granizo ML, Blanco-Varela MT, Palomo A (2000) J Mater Sci 35(24):6309

    Article  CAS  Google Scholar 

  4. Provis JL, Duxson P, van Deventer JSJ, Lukey GC (2005a) Chem Eng Res Design 83(A7):853

    Article  CAS  Google Scholar 

  5. Provis JL, Lukey GC, van Deventer JSJ (2005b) Chem Mater 17(12):3075

    Article  CAS  Google Scholar 

  6. Xu H, van Deventer JSJ (2000) Comput Chem 24(3–4):391

    Article  CAS  Google Scholar 

  7. Xu H, van Deventer JSJ, Roszak S, Leszczynski J (2004) Int J Quantum Chem 96(4):365

    Article  CAS  Google Scholar 

  8. Lasaga AC, Gibbs GV (1990) Am J Sci 290(3):263

    Article  Google Scholar 

  9. de Jong BHWS, Brown GE (1980) Geochim Cosmochim Acta 44(3):491

    Article  Google Scholar 

  10. Lasaga AC, Gibbs GV (1990) Am J Sci 290(3):263

    Article  Google Scholar 

  11. Kubicki JD, Sykes D (1995) Geochim Cosmochim Acta 59(23):4791

    Article  CAS  Google Scholar 

  12. Pereira JCG, Catlow CRA, Price GD (1999b) J Phys Chem A 103(17):3268

    Article  CAS  Google Scholar 

  13. Catlow CRA, George AR, Freeman CM (1996) Chem Comm (11):1311

  14. Lasaga A (1984) J Geophy Res 89(B6):4009

    Article  CAS  Google Scholar 

  15. Blum AE, Lasaga AC (1991) Geochim Cosmochim Acta 55(8):2193

    Article  CAS  Google Scholar 

  16. Blum AE, Lasaga AC (1988) Nature 331(6155):431

    Article  CAS  Google Scholar 

  17. Brady PV, Walther JV (1990) Chem Geol 82(3–4):253

    Article  CAS  Google Scholar 

  18. Casey WH, Sposito G (1992) Geochim Cosmochim Acta 56(10):3825

    Article  CAS  Google Scholar 

  19. Oelkers EH, Schott J, Devidal JL (1994) Geochim Cosmochim Acta 58(9):2011

    Article  CAS  Google Scholar 

  20. Faimon J (1996) Geochim Cosmochim Acta 60(15):2901

    Article  CAS  Google Scholar 

  21. Walther JV (1996) Am J Sci 296(7):693

    Article  CAS  Google Scholar 

  22. Xiao Y, Lasaga AC (1996) Geochim Cosmochim Acta 60(13):2283

    Article  CAS  Google Scholar 

  23. Bauer A, Velde B, Berger G (1998) Appl Geochem 13(5):619

    Article  CAS  Google Scholar 

  24. Ejaz T, Jones AG, Graham P (1999) J Chem Eng Data 44(3):574

    Article  CAS  Google Scholar 

  25. Huertas FJ, Chou L, Wollast R (1999) Geochim Cosmochim Acta 63(19–20):3261

    Article  CAS  Google Scholar 

  26. Hamilton JP, Brantley SL, Pantano CG, Criscenti LJ, Kubicki JD (2001) Geochim Cosmochim Acta 65(21):3683

    Article  CAS  Google Scholar 

  27. Oelkers EH (2001) Geochim Cosmochim Acta 65(21):3703

    Article  CAS  Google Scholar 

  28. Köhler SJ, Dufaud F, Oelkers EH (2003) Geochim Cosmochim Acta 67(19):3583

    Article  CAS  Google Scholar 

  29. Tsomaia N, Brantley SL, Hamilton JP, Pantano CG, Mueller KT (2003) Am Mineral 88(1):54

    CAS  Google Scholar 

  30. Davidovits J (1988) In: Proceedings of the First European Conference on Soft Mineralogy, France: Compiegne, pp 25–48

  31. Davidovits J, Comrie DC, Paterson JH, Ritcey DJ (1990) Design Construct 12(7):30

    CAS  Google Scholar 

  32. Davidovits J, Davidovits M (1991) In: 36th Annual SAMPE Symposium. California, Covina: Society for the Advancement of Material and Process Engineering, pp 1939–1949

  33. Davidovits J (1993a) Ceram Transac 37:165

    CAS  Google Scholar 

  34. Davidovits J (1993b) In: Emerging technologies on cement and concrete in the global environment. Symposium. Chicago IL SKOKIE, IL, PCA, USA, p 21

  35. Davidovits J (1994a) Concrete Int 16(12):53

    CAS  Google Scholar 

  36. Davidovits J (1994b) J Mater Edu 16(2&3):91

    CAS  Google Scholar 

  37. Davidovits J (1994c) In: Mehta PK (ed) Concrete technology, past, present, and future. American Concrete Institute SP-144, Detroit, pp 383–397

  38. Davidovits J (1994d) In: Proceedings of the First International conference on Alkali Cements and Concretes, Scientific, Ukraine, KIEV, pp 131–149

  39. Lyon RE, Foden A, Balaguru PN, Davidovits M, Davidovits J (1997) J Fire Mater 21:67

    Article  CAS  Google Scholar 

  40. Lyon RE, Sorathia U, Balaguru PN, Foden A, Davidovits J, Davidovits M (1996) In: Proceedings of the first International Conference on Fiber Composites in Infrastructure (ICCI’96). Dept. Civil Eng., University of Arizona, USA, Tucson Arizona, pp 972–981

  41. Davidovits J (1999) In: Proceedings of Geopolymere ‘99. Institute Geopolymer, France, Saint-Quentin, pp 9–40

  42. Van Jaarsveld JGS, Van Deventer JSJ (1999) Cement Concrete Res 29(8):1189

    Article  Google Scholar 

  43. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1998) Metall Mater Transac B 29B:283

    Article  Google Scholar 

  44. Van Jaarsveld JGS, Van Deventer JSJ, Schwartzman A (1999) Minerals Eng 12(1):75

    Article  Google Scholar 

  45. Hua X, Van Deventer JSJ (2000) Int J Miner Process 59:247

    Article  Google Scholar 

  46. Phair JW, Van Deventer JSJ (2001) Mineral Eng 14(3):289

    Article  CAS  Google Scholar 

  47. Palomo A, Blanco Varela MT, Granizo ML et al (1999) Cement Concrete Res 29(7):997

    Article  CAS  Google Scholar 

  48. Alonso S, Palomo A (2000) Cement Concrete Res 31(1):25

    Article  Google Scholar 

  49. Alonso S, Palomo A (2001) Mater Lett 56(3):127

    Google Scholar 

  50. Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concrete Res 29(8):1323

    Article  CAS  Google Scholar 

  51. Barbosa VFF, Mackenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2(4):309

    Article  CAS  Google Scholar 

  52. Pawl F (1989) Structural chemistry of silicates: structure, bonding formation and classification. Xi Yaozhong trans., Beijing, China: the China Binding and industrial Press

  53. Ding Z, Zhang D, Wang X (1997) Bull Chinese Ceram Soc 4:57

    Google Scholar 

  54. Rocha J, Klinowski J (1990) Angewandte Chemie – Int Ed, English 29(5):553

    Article  Google Scholar 

  55. Babushkin VT, Matveyev GM, Mchedlov-Petrossyan OP (1985) Thermodynamics of silicates. Springer-Verlag, Berlin, pp 276–281

    Google Scholar 

  56. McComick AV, Bell AT, Raddke CJ (1989) J Phys Chem 93(5):1733

    Article  Google Scholar 

  57. McComick AV, Bell AT, Raddke CJ (1989) J Phys Chem 93(5):1737

    Article  Google Scholar 

  58. McComick AV, Bell AT, Raddke CJ (1989) J Phys Chem 93(5):1747

    Google Scholar 

  59. Swaddle TW, Salerno J, Tregloan PA (1994) Chem Soc Rev 23:319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support from the china national natural science foundation (No. 50278018), Opening and flowing research project funded by Nanjing Hydraulic Research Institute (No. Yk90508), and the Jiangsu Province Natural Science project of No. BK2006555 and No. BK2005216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Yunsheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yunsheng, Z., Wei, S. Semi-empirical AM1 calculations on 6-memebered alumino-silicate rings model: implications for dissolution process of metakaoline in alkaline solutions. J Mater Sci 42, 3015–3023 (2007). https://doi.org/10.1007/s10853-006-0521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0521-x

Keywords

Navigation