Skip to main content
Log in

In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al–Mg films. To this end, in situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al–Mg films with varying Mg contents. The observed propagation of dislocations is markedly different between Al and Al–Mg films, i.e. the presence of solute Mg results in solute drag, evidenced by a jerky-type dislocation motion with a mean jump distance that compares well to earlier theoretical and experimental results. It is proposed that this solute drag accounts for the difference between the load-controlled indentation responses of Al and Al–Mg alloys. In contrast to Al–Mg alloys, several yield excursions are observed during initial indentation of pure Al, which are commonly attributed to the collective motion of dislocations nucleated under the indenter. Displacement-controlled indentation does not result in a qualitative difference between Al and Al–Mg, which can be explained by the specific feedback characteristics providing a more sensitive detection of plastic instabilities and allowing the natural process of load relaxation to occur. The in situ indentation measurements confirm grain boundary motion as an important deformation mechanism in ultrafine-grained Al when it is subjected to a highly inhomogeneous stress field as produced by a Berkovich indenter. It is found that solute Mg effectively pins high-angle grain boundaries during such deformation. The mobility of low-angle boundaries is not affected by the presence of Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Brandon D, Wayne DK (1999) Microstructural characterization of materials. John Wiley, New York

    Google Scholar 

  2. De Hosson JThM, Kanert O, Sleeswyk AW (1983) In: Nabarro FRN (ed) Dislocations in solids, vol 6. North-Holland, Amsterdam, p 441

  3. Wall MA, Dahmen U (1997) Microsc Microanal 3:593

    Google Scholar 

  4. Wall MA, Dahmen U (1998) Microsc Res Tech 42:248

    Article  CAS  Google Scholar 

  5. Stach EA, Freeman T, Minor AM, Owen DK, Cumings J, Wall MA, Chraska T, Hull R, Morris JW Jr, Zettl A, Dahmen U (2001) Microsc Microanal 7:507

    CAS  Google Scholar 

  6. Minor AM, Morris JW Jr, Stach EA (2001) Appl Phys Lett 79:1625

    Article  CAS  Google Scholar 

  7. Minor AM, Lilleodden ET, Stach EA, Morris JW Jr (2002) J Electron Mater 31:958

    Article  CAS  Google Scholar 

  8. Minor AM, Lilleodden ET, Stach EA, Morris JW Jr (2004) J Mater Res 19:176

    Article  CAS  Google Scholar 

  9. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Mater Sci Eng A 238:219

    Article  Google Scholar 

  10. Winning M, Gottstein G, Shvindlerman LS (2001) Mater Sci Eng A 317:17

    Article  Google Scholar 

  11. Van Swygenhoven H, Caro A, Farkas D (2001) Mater Sci Eng A 309–310:440

    Article  Google Scholar 

  12. Van KJ Vliet, Tsikata S, Suresh S (2003) Appl Phys Lett 83:1441

    Article  Google Scholar 

  13. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  14. Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Acta Mater 52:5381

    Article  CAS  Google Scholar 

  15. Larsson P-L, Giannakopoulos AE, Söderlund E, Rowcliffe DJ, Vestergaard R (1996) Int J Solids Structures 33:221

    Article  Google Scholar 

  16. Soer WA, De Hosson JThM, Minor AM, Stach EA, Morris JW Jr (2004) Mater Res Soc Symp Proc 795:U9.3.1

    Google Scholar 

  17. Soer WA, De Hosson JThM, Minor AM, Morris JW Jr, Stach EA (2004) Acta Mater 52:5783

    Article  CAS  Google Scholar 

  18. Minor AM, Ph.D. thesis (University of California, Berkeley, 2002)

  19. Warren OL, Downs SA, Wyrobek TJ (2004) Z Metallkd 95:287

    Article  CAS  Google Scholar 

  20. Mondolfo LF (1979) Aluminum alloys: structure and properties. Butterworth, London 313

    Google Scholar 

  21. Dahmen U, Westmacott KH (1988) Scripta Metall 22:1673

    Article  CAS  Google Scholar 

  22. Schlagowski U, Kanert O, De Hosson JThM, Boom G (1988) Acta Metall 36:865

    Article  CAS  Google Scholar 

  23. De Hosson JThM, Kanert O, Schlagowski U, Boom G (1988) J Mater Res 3:645

    Article  Google Scholar 

  24. Nabarro FRN (1975) In: Hirsch PB (ed) The physics of metals, vol 2. Cambridge University Press, p 152

  25. Foreman AJE, Makin MJ (1966) Philos Mag 14:911

    Article  CAS  Google Scholar 

  26. De Hosson, JThM, Alsem WHM, Tamler H, Kanert O (1983) In: Sih GC, Provan JW (eds) Defects, Fracture and Fatigue. Martinus Nijhoff, The Hague, p 23

  27. McCormick PG (1972) Acta Metall 20:351

    Article  CAS  Google Scholar 

  28. van den Beukel A (1980) Acta Metall 28:965

    Article  Google Scholar 

  29. Bérces G, Chinh NQ, Juhász A, Lendvai J (1998) J Mater Res 13:1411

    Article  Google Scholar 

  30. Chinh NQ, Csikor F, Kovács Zs, Lendvai J (2000) J Mater Res 15:1037

    Article  CAS  Google Scholar 

  31. Tabata T, Fujita H, Nakajima Y (1980) Acta Metall 28:795

    Article  CAS  Google Scholar 

  32. Robinson JM (1995) Mater Sci Eng A 203:238

    Article  Google Scholar 

  33. Kubin LP, Estrin Y (1990) Acta Metall Mater 38:697

    Article  CAS  Google Scholar 

  34. Chen X, Vlassak JJ (2001) Mater J Res 16:2974

    Article  CAS  Google Scholar 

  35. Xu Z-H, Rowcliffe D (2004) Thin Solid Films 447–448:399

    Article  Google Scholar 

  36. Gouldstone A, Koh H-J, Zeng K-Y, Giannakopoulos AE, Suresh S (2000) Acta Mater 48:2277

    Article  CAS  Google Scholar 

  37. Gerberich WW, Venkataraman SK, Huang H, Harvey SE, Kohlstedt DL (1995) Acta Metall Mater 43:1569

    Article  CAS  Google Scholar 

  38. Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Acta Mater 44:3585

    Article  CAS  Google Scholar 

  39. Bahr DF, Kramer DE, Gerberich WW (1998) Acta Mater 46:3605

    Article  CAS  Google Scholar 

  40. Sickafus K, Sass SL (1984) Scripta Metall 18:165

    Article  CAS  Google Scholar 

  41. Lin CH, Sass SL (1988) Scripta Metall 22:735

    Article  CAS  Google Scholar 

  42. Rittner JD, Seidman DN (1997) Acta Mater 45:3191

    Article  CAS  Google Scholar 

  43. Lamelas FJ, Tang M-T, Evans-Lutterodt K, Fuoss PH, Brown WL (1992) Phys Rev B 46:15570

    Article  CAS  Google Scholar 

  44. Dahmen U, Hetherington CJD, O’Keefe MA, Westmacott KH, Mills MJ, Daw MS, Vitek V (1990) Philos Mag Lett 62:327

    Article  Google Scholar 

  45. Paciornik S, Kilaas R, Turner J, Dahmen U (1996) Ultramicroscopy 62:15

    Article  CAS  Google Scholar 

  46. Pénisson JM, Lançon F, Dahmen U (1999) Mater Sci Forum 294–296:27

    Google Scholar 

  47. Merkle KL, Thompson LJ (1999) Phys Rev Lett 83:556

    Article  CAS  Google Scholar 

  48. Medlin DL, Foiles SM, Cohen D (2001) Acta Mater 49:3689

    Article  CAS  Google Scholar 

  49. Medlin DL, Cohen D, Pond RC (2003) Philos Mag Lett 83:223

    Article  CAS  Google Scholar 

  50. Westmacott KH, Hinderberger S, Dahmen U (2001) Philos Mag A 81:1547

    Article  CAS  Google Scholar 

  51. Song SG, Vetrano JS, Bruemmer SM (1997) Mater Sci Eng A 232:23

    Article  Google Scholar 

  52. Frank FC (1950) In: A symposium on the plastic deformation of crystalline solids. Office of naval research, Washington, DC, p 151

  53. Read WT (1953) Dislocations in crystals. McGraw-Hill, New York

    Google Scholar 

  54. Sutton AP, Balluffi RW (1995) Interfaces in crystalline solids. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

Indisputably Professor David Brandon became an inspiring and enthusiastic leader in the field of materials science. We are eager to seize this opportunity to thank him for his stimulus provided over the years and for his international leadership. The contributions of Daan Hein Alsem (LBNL–Berkeley) to the preparation of the Al–Mg thin films are gratefully acknowledged. The work is part of the research program of the Netherlands Institute for Metals Research, project nr MC4.01104. The quantitative in-situ nanoindentation holder was developed under a U.S. Department of Energy SBIR grant (DE-FG02–04ER83979) awarded to Hysitron, Inc., which does not constitute an endorsement by DOE of the views expressed in this article. This work also was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff T. M. De Hosson.

Additional information

Special title: Advanced Materials and Characterization: Proceedings of the Brandon Symposium; Guest Editors: Wayne D. Kaplan and Srinivasa Ranganathan

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Hosson, J.T.M., Soer, W.A., Minor, A.M. et al. In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon. J Mater Sci 41, 7704–7719 (2006). https://doi.org/10.1007/s10853-006-0472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0472-2

Keywords

Navigation