Skip to main content
Log in

Hot-water treatment of sol–gel derived SiO2–TiO2 microparticles and application to electrophoretic deposition for thick films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiO2–TiO2 spherical microparticles of about 0.7 μm in diameter were prepared by the sol–gel method. Anatase nanocrystals were formed in the microparticles and their specific surface area was increased after a hot-water treatment at 90 °C. From the changes in the concentration of I2 photocatalytically generated from KI aqueous solution, the activity of the SiO2–TiO2 microparticles was found to increase with increasing the hot-water treatment time. Particulate, thick films were electrophoretically deposited on indium tin oxide (ITO)-coated glass substrates using the anatase nanocrystal-precipitated SiO2–TiO2 microparticles. The thickness of the electrophoretically deposited particulate film increased to be approximately 10 μm with an increase in applied voltage. The resultant thick film showed a high photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mao Y, Schoneich C, Asmus KD (1993) Photocatalytic purification of water and air. Elsevier, North-Holland, p 49

  2. Yamashita H, Ichihashi Y, Anpo M, Hashimoto M, Louis C, Che M (1996) J Phys Chem 100:16041

    Article  CAS  Google Scholar 

  3. Choy J, Park J, Yoon J (1998) J Phys Chem B 102:5991

    Article  CAS  Google Scholar 

  4. Papoutsi D, Lianos P, Yianoulis P, Koutsoukos P (1994) Langmuir 10:1684

    Article  CAS  Google Scholar 

  5. Wang R, Hashimoto K, Fujishima A, Chikuni N, Kojima E, Kitamura A, Shimohigosi M, Watanabe T (1997) Nature 388:431

    Article  CAS  Google Scholar 

  6. Wang R, Sasaki N, Fujishima A, Watanabe T, Hashimoto K (1999) J Phys Chem B 103:2188

    Article  CAS  Google Scholar 

  7. Machida M, Norimoto K, Watanabe T, Hashimoto K, Fujishima A (1999) J Mater Sci 34:2569

    Article  CAS  Google Scholar 

  8. Hoffmann MR, Martin ST, Choi W, Bahnemann D (1995) Chem Rev 95:69

    Article  CAS  Google Scholar 

  9. Linsebiger AL, Lu G, Jr Yates T (1995) Chem Rev 95:735

    Article  Google Scholar 

  10. Lin Y-L, Wang T-J, Jin Y (2002) Powder Technol 123:194

    Article  CAS  Google Scholar 

  11. Choi H-H, Park J, Singh RK (2005) Appl Surf Sci 240:7

    Article  CAS  Google Scholar 

  12. Wilhelm P, Stephan D (2006) J Colloid Interface Sci 293:88

    Article  CAS  Google Scholar 

  13. Hüsing N, Launay B, Kickelbick G, Hofer F (2003) J Sol-Gel Sci Technol 26:615

    Article  Google Scholar 

  14. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2000) J Am Ceram Soc 83:229

    Article  CAS  Google Scholar 

  15. Kotani Y, Matsuda A, Kogure T, Tatsumisago M, Minami T (2001) Chem Mater 13:2144

    CAS  Google Scholar 

  16. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2001) J Sol-Gel Sci Technol 22:41

    Article  CAS  Google Scholar 

  17. Kotani Y, Matsuda A, Matoda T, Kogure T, Tatsumisago M, Minami T (2001) J Mater Chem 11:2045

    Article  CAS  Google Scholar 

  18. Matsuda A, Matoda T, Kotani Y, Kogure T, Tatsumisago M, Minami T (2003) J Sol-Gel Sci Technol 26:517

    Article  CAS  Google Scholar 

  19. Matsuda A, Matoda T, Tadanaga K, Tatsumisago M, Minami T, Kogure T (2005) J Am Ceram Soc 88:1421

    Article  CAS  Google Scholar 

  20. Matsuda A, Matoda T, Kogure T, Tadanaga K, Tatsumisago M, Minami T (2005) J Mater Res 20:256

    Article  CAS  Google Scholar 

  21. Boccaccini AR, Roether JA, Thomas BJC, Shaffer MSP, Chavez E, Stoll E, Minay EJ (2006) J Ceram Soc Jpn 114:1

    Article  CAS  Google Scholar 

  22. Matthews D, Kay A, Gratzel M (1994) Aust J Chem 47:1869

    Article  CAS  Google Scholar 

  23. Boccaccini AR, Krueger HG, Schindler U (2001) Mater Lett 51:225

    Article  CAS  Google Scholar 

  24. Boccaccini AR, Karapappas P, Marijuan JM, Kaya C (2004) J Mater Sci 39:851

    Article  CAS  Google Scholar 

  25. Nishimori H, Tatsunisago M, Minami T (1995) J Ceram Soc Jpn 103:78

    CAS  Google Scholar 

  26. Sakamoto R, Nishimori H, Tatsunisago M, Minami T (1998) J Ceram Soc Jpn 106:1034

    CAS  Google Scholar 

  27. Katagiri K, Hasegawa K, Matsuda A, Tatsunisago M, Minami T (1998) J Am Ceram Soc 81:2501

    Article  CAS  Google Scholar 

  28. Castro Y, Duran A, Moreno R, Ferrari B (2002) Adv Mater 14:505

    Article  CAS  Google Scholar 

  29. Yang J, Mei S, Ferreira JMF (2003) J Colloid Interface Sci 260:82

    Article  CAS  Google Scholar 

  30. Wilhelm P, Stephan D (2006) J Colloid Interface Sci 293:88

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by The Japan Society for the Promotion of Science (Grants-in-Aid for Scientific Research No. 16360327(B)), Tatematsu Foundation, Izumi Science and Technology Foundation, and Hosokawa Powder Technology Foundation. The authors thank Professor Tsutomu Minami of Osaka Prefecture University and Professor Mototsugu Sakai of Toyohashi University of Technology for their continuous encouragement and guidance. They also thank Professor Toshihiro Kogure of The University of Tokyo for TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunori Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, A., Higashi, Y., Tadanaga, K. et al. Hot-water treatment of sol–gel derived SiO2–TiO2 microparticles and application to electrophoretic deposition for thick films. J Mater Sci 41, 8101–8108 (2006). https://doi.org/10.1007/s10853-006-0419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0419-7

Keywords

Navigation