Skip to main content
Log in

Quantitative pressure and strain field analysis of helium precipitates in silicon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural properties of overpressurised helium precipitates formed by low dose ion implantation and subsequent annealing of silicon are investigated by quantitative transmission electron microscopy techniques. These precipitates, which show pronounced platelet geometry, are analysed with respect to their geometry, crystallographic orientation and their particular gas pressure values. The dependence of the measured platelet pressure versus the radius is discussed in terms of a Griffith crack. Experimental results on the shape and the crystallographic orientation of the platelets are discussed in the framework of anisotropic elastic properties and surface energies of silicon. The ability of the precipitates to punch-out dislocation loops is discussed in terms of associated threshold shear stress values and evaluated with regard to the defect size dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trinkaus H (1983) Rad Effects 78:189

    Article  CAS  Google Scholar 

  2. Donnelly SE (1985) Rad Effects 90:1

    Article  CAS  Google Scholar 

  3. van Veen A (1991) In: Donnelly SE and Evans JH (eds) Fundamental aspects of inert gases in solids, Plenum Press, New York, p 41

  4. Holländer B, St. Lenk, Mantl S, Trinkaus H, Kirch D, Luysberg M, Herzog H-J, Hackbarth T, Fichtner PFP (2001) Nucl Instr Meth Phys Res B 175–177:357

    Article  Google Scholar 

  5. Fichtner PFP, Kaschny JR, Yankov RA, Mücklich A, Kreißig U, Skorupa W (1996) Appl Phys Lett 61:2656

    Google Scholar 

  6. Trinkaus H, Holländer B, St. Rongen, Mantl S, Herzog HJ, Kuchenbecker J, Hackbarth T. (2000) Appl Phys Lett 76:3552

    Article  CAS  Google Scholar 

  7. Herve AJ, Bruel M (2000) Int J High Speed Electronics Syst 10:131

    Article  Google Scholar 

  8. Luysberg M, Kirch D, Trinkaus H, Holländer B, St. Lenk, Mantl S, H.-Herzog J, Hackbarth T, Fichtner PFP (2002) J Appl Phys 92:4290

    Article  CAS  Google Scholar 

  9. Hartmann M, Trinkaus H (2002) Phys Rev Lett 88:055505

    Article  CAS  Google Scholar 

  10. Biersack JP, Haggmark L (1980) Nucl Instr Meth 174:257

    Article  CAS  Google Scholar 

  11. Cerofolini GF, Corni F, Frabboni S, Nobili C, Ottaviani G, Tonini R (2000) Mater Sci Eng Reports 27:1

    Article  Google Scholar 

  12. Fichtner PFP, Kaschny JR, Behar M, Yankov RA, Mücklich A, Skorupa W (1999) Nucl Inst Meth 148:329

    Article  CAS  Google Scholar 

  13. Oliviero E, Beafort MF, Barbot JF (2001) J Appl Phys 89:5332

    Article  CAS  Google Scholar 

  14. Ashby MF, Brown LM (1963) Phil Mag 8:1649

    Article  CAS  Google Scholar 

  15. Ashby MF, Brown LM (1963) Phil Mag 8:1083

    Article  Google Scholar 

  16. Raineri V, Saggio M (1997) Appl Phys Lett 71:1673

    Article  CAS  Google Scholar 

  17. Brusa RS, Karwasz GP, Tiengo N, Zecca A (2000) Phys Rev B61:10154

    Article  Google Scholar 

  18. Chen J, Jung P, Trinkaus H (2000) Phys Rev B61:12923

    Article  Google Scholar 

  19. Fichtner PFP, Kaschny JR, Kling A, Trinkaus H, Yankov RA, Mücklich A, Skorupa W, Zawislak FC, Amaral L, da Silva MF, Soares JC (1998) Nucl Inst and Meth B 136–138:460

    Article  Google Scholar 

  20. Hellwege K-H (eds) (1982) Landolt-Börnstein: numerical data and functional relationships in science and technology. New Series, Springer-Verlag, Berlin, p 17

  21. Tillmann K, Hueging N, Trinkaus H, Luysberg M, Urban K (2004) Microsc Microanal 10:199

    Article  CAS  Google Scholar 

  22. Howie A, Whelan MJ (1961) Proc R Soc A163:217

    Google Scholar 

  23. Howie A, Whelan MJ (1962) Proc R Soc A267:217

    Google Scholar 

  24. Griffith A (1921) Trans R Soc A221:163

    Article  Google Scholar 

  25. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York

    Google Scholar 

  26. Hueging N, Luysberg M, Urban K, Buca D, Mantl S (2005) Appl Phys Lett 86:042112

    Article  Google Scholar 

  27. Eaglesham DJ, White AE, Feldman LC, Moriya N, Jacobson DC (1993) Rev Lett 70:1643

    Article  Google Scholar 

Download references

Acknowledgements

The authors cordially thank Bernd Holländer and Siegfried Mantl for the fruitful cooperation during realisation of the implantation experiments, for guidance of the SRIM calculations as well as for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Luysberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hueging, N., Luysberg, M., Trinkaus, H. et al. Quantitative pressure and strain field analysis of helium precipitates in silicon. J Mater Sci 41, 4454–4465 (2006). https://doi.org/10.1007/s10853-006-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0153-1

Keywords

Navigation