Skip to main content
Log in

Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polypropylene (PP) fibres have an extensive range of applications, including filtration, composites, biomaterials and electronics. In these applications, the surface properties of the fibres are particularly important. This paper presents examples of the use of gas plasma technology to create functional nanostructures on PP fibre surfaces, which render the surfaces hydrophilic. It is also shown how these treatments can be regulated to produce the desired level of hydrophilicity for a given application. Three principal modifications have been performed, to create functional nanostructures: plasma activation with oxygen gas plasma, grafting of polyacrylic acid following argon gas plasma treatment, and plasma-enhanced deposition of silver. Atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM) were employed to characterise the morphology, surface structure and composition of the fibres treated by gas plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. KEKKONEN, P. STENIUSandH. LANIE, Tappi J. 83 (2000) 71.

    Google Scholar 

  2. C. D. RADU, P. KIEKENSandJ. VERSCHERUREN, “Surface Characteristics of Fibers and Textiles,” edited by C. M. Pastore and P. Kiekens (Marcel Dekker, 2001) p. 203.

  3. B. L. ILLINGWORTH, K. TWEDEN, R. F. SCHROEDERandJ. D. CAMERON, J. Heart Val. Dis. 7 (1998) 524.

    Google Scholar 

  4. M. LIEBERMANandA. LICHTENBERG, in “Principles of Plasma Discharges and Materials Processing” (John Wiley and Sons, New York, 1994).

    Google Scholar 

  5. M. IBNABDDJALIL, I. H. LOH, C. C. CHU, N. BLUMENTHAL, H. ALEXANDERandD. TURNER, J. Biomed. Mater. Res. 28 (1994) 289.

    Article  PubMed  Google Scholar 

  6. V. N. AIYANGERandI. R. HARDIN, Ind. Textile J. 91 (1981) 79.

    Google Scholar 

  7. Z. Z. YANG, H. J. LIN, I. S. TSAIandT. Y. KUO, Textile Res. J. 72 (2002) 1099.

    Google Scholar 

  8. P. NOUSIAINEN, FiberMed 2000, Medical Textiles 8 (2000) 2.

    Google Scholar 

  9. R. D. YANG, R. R. MATHERandA. F. FOTHERINGHAM, Int. Polym. Processing 14 (1999) 60.

    Google Scholar 

  10. H. S. CHIO, Y. S. KIM, Y. ZHANG, S. TANG, S. W. MYUNGandB. C. SHIN, Sur. Coat. Techn. 182 (2004) 55.

    Article  Google Scholar 

  11. Q. F. WEI, R. R. MATHER, A. F. FOTHERINGHAMandR. D. YANG, Textile Res J. 73 (2003) 557.

    Google Scholar 

  12. Q. F. WEI, R. R. MATHER, A. F. FOTHERINGHAMandR. D. YANG, J. Ind. Textiles 32 (2002) 59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q.F., Mather, R.R., Wang, X.Q. et al. Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces. J Mater Sci 40, 5387–5392 (2005). https://doi.org/10.1007/s10853-005-4336-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-4336-y

Keywords

Navigation