Skip to main content
Log in

“Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Green”/biobased composites were prepared from poly(lactic acid) (PLA) and recycled cellulose fibers (from newsprint) by extrusion followed by injection molding processing. The physico-mechanical and morphological properties of the composites were investigated as a function of varying amounts of cellulose fibers. Compared to the neat resin, the tensile and flexural moduli of the composites were significantly higher. This is due to higher modulus of the reinforcement added to the PLA matrix. Dynamic mechanical analysis (DMA) results also confirmed that the storage modulus of PLA increased on reinforcements with cellulose fibers indicating the stress transfers from the matrix resin to cellulose fiber. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) showed that the presence of cellulose fibers did not significantly affect the crystallinity, or the thermal decomposition of PLA matrix up to 30 wt% cellulose fiber content. Overall it was concluded that recycled cellulose fibers from newsprint could be a potential reinforcement for the high performance biodegradable polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. MOHANTY, M. MISRA and L. T. DRZAL, J. Polym. Env. 10(1/2) (2002) 19.

    Article  Google Scholar 

  2. B. BERENBERG, Compos. Technol. Nov./Dec. (2000) 13.

  3. A. K. MOHANTY, M. MISRA and G. HINRICHSEN, Macromol. Mater. Eng. 276/277 (2000) 1.

    Article  Google Scholar 

  4. P. MAPLESTON, Mod. Plast. Int. 27(6) (1997) 39.

    Google Scholar 

  5. L. FAMBRI, A. PEGORETTI, R. FENNER, S. D. INCARDONA and C. MIGLIARESI, Polymer 36 (1995) 79.

    Google Scholar 

  6. R. P. SHELDON, “Composite Polymeric Materials” (Applied Science, London, 1982).

    Google Scholar 

  7. N. G. GAYLORD, in “Copolymers, Polyblends and Composites,” edited by N. PLATZER (Academic, New York, 1975) p. 76.

    Google Scholar 

  8. R. HEIJENRATH and T. PEIJS, Adv. Compos. Lett. 5(3) (1996) 81.

    Google Scholar 

  9. P. ZADORECKI and A. J. MICHELL, Poly. Compos. 10(2) (1989) 27.

    Google Scholar 

  10. P. V. JOSEPH, K. JOSEPH and S. THOMAS, J. Compos. Sci. Technol. 59 (1999) 1625.

    Article  Google Scholar 

  11. A. D. BESHAY, B. V. KOKTA and C. DANEAULT, Polym. Compos. 6(4) (1985) 261.

    Article  Google Scholar 

  12. R. GAUTHIER, C. JOLY, A. C. COUPAS, H. GAUTHIER and M. ESCOUBES, ibid. 19(3) (1998) 287.

    Article  Google Scholar 

  13. J. R. WRIGHT and L. J. MATHIAS, J. Appl. Polym. Sci. 48 (1993) 2225; 48 (1993) 2241.

    Article  Google Scholar 

  14. 14.H. J. ENDRES and A. PRIES, Starch/Starke 47 (1995) 384.

    Google Scholar 

  15. W. GUO and M. ASHIDA, J. Appl. Polym. Sci. 50 (1993) 1435.

    Article  Google Scholar 

  16. A. K. BLEDZKI and J. GASSAN, Prog. Polym. Sci. 24 (1999) 221.

    Article  Google Scholar 

  17. A. K. RANA, B. C. MITRA and A. N. BENERJEE, J. Appl. Polym. Sci. 71 (1999) 531.

    Article  Google Scholar 

  18. L. MASCIA, “The Role of Additives in Plastics” (Edward Arnold, London, 1974) Chap. 3.

    Google Scholar 

  19. M. FOLKES, in “Short fiber reinforced thermoplastics,” edited by M. BEVIS (John Wiley & Sons Ltd., New York, 1985) p. 151.

    Google Scholar 

  20. E. W. FISHER, H. J. STERZEL and G. WEGNER, Kolloid. Z. Z. Polym. 25 (1973) 980.

    Article  Google Scholar 

  21. J. W. PARK and S. S. IM, J. Appl. Polym. Sci. 86 (2002) 647.

    Article  Google Scholar 

  22. X. LIU, M. DEVER, N. FAIR and R. S. BENSON, J. Environ. Polym. Degrad. 5 (1997) 225.

    Google Scholar 

  23. J. J. FAY, C. J. MURPHY, D. A. THOMAS and L. H. SPERLING, Polym. Eng. Sci. 31 (1991) 1731.

    Article  Google Scholar 

  24. K. PETERSEN, PER. V. NIELSEN and B. M. OLSEN, Starch/Starke 53 (2001) 356.

    Article  Google Scholar 

  25. J. GEORGE, S. S. BHAGWAN and S. THOMAS, J. Thermoplast. Compos. Mater. 12 (1999) 443.

    Google Scholar 

  26. N. SAHA, D. BASU and A. N. BANERJEE, J. Appl. Polym. Sci. 71 (1999) 541.

    Article  Google Scholar 

  27. C. Chen and C. M. Ma, Compos. Sci. Technol. 52 (1994) 427.

    Article  Google Scholar 

  28. K. C. MANIKANDAN NAIR, S. THOMAS and G. GROENINCK, ibid. 61 (2001) 2519.

    Article  Google Scholar 

  29. B. V. KOKTA, F. DEMBELE and C. DANEAULT, in “Polymer Science and Technology,” edited by C. E. CARRAHER, JR. and L. H. SPERLING (Plenum, New York, 1985) Vol. 33.

    Google Scholar 

  30. S. MISHRA, S. S. TRIPATHY, M. MISRA, A. K. MOHANTY and S. K. NAYAK, J. Reinf. Plast. Compos. 21(1) (2002) 5570.

    Google Scholar 

  31. N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellomaki and P. Tormala, Biomaterials 23 (2002) 1579.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huda, M.S., Mohanty, A.K., Drzal, L.T. et al. “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40, 4221–4229 (2005). https://doi.org/10.1007/s10853-005-1998-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-1998-4

Keywords

Navigation