Skip to main content
Log in

Cyclodextrin-based polymeric materials for the specific recovery of polyphenolic compounds through supramolecular host–guest interactions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

While the specific recovery of valuable chemicals from waste streams represents an environmentally-friendly and potentially economically-relevant alternative to synthetic chemical productions, it remains a largely unmet challenge. This is partially explained by the complexity of designing sorption materials able to target one specific compound and able to function in complex matrices. In this work, a series of cyclodextrin-based polymers (CDPs) were designed to selectively extract phenolic compounds from a complex organic matrix that is olive oil mill wastewater (OMW). In order to endow these polymers with selective adsorption properties, several monomers and cross-linkers were screened and selected. The adsorption properties of the CDPs produced were first tested with selected phenolic compounds commonly found in OMW, namely syringic acid, p-coumaric acid, tyrosol and caffeic acid. The selected CDPs were subsequently tested for their ability to adsorb phenolic compounds directly from OMW, which is known to possess a high and complex organic content. It was demonstrated through high-performance liquid chromatography-mass spectroscopy analyses that efficient removal of phenolic compounds from OMW could be achieved but also that two compounds, namely tyrosol and hydroxytyrosol, could be selectively extracted from OMW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gale, P.A., Steed, J.W.: Supramolecular chemistry: from molecules to nanomaterials. John Wiley & Sons, Chichester (2012)

    Book  Google Scholar 

  2. Ariga, K., Ito, H., Hill, J.P., Tsukube, H.: Molecular recognition: from solution science to nano/materials technology. Chem. Soc. Rev. 41, 5800–5835 (2012)

    Article  CAS  Google Scholar 

  3. Rusan, M.M., Albalasmeh, A., Zuraiqi, S., Bashabsheh, M.: Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.). Environ. Sci. Pollut. Res. 22, 1–9 (2015)

  4. Whitcombe, M.J., Chianella, I., Larcombe, L., Piletsky, S.A., Noble, J., Porter, R., Horgan, A.: The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 40, 1547–1571 (2011)

    Article  CAS  Google Scholar 

  5. Haupt, K.: Peer reviewed: molecularly imprinted polymers: the next generation. Anal. Chem. 75, 376–383 (2003)

    Article  Google Scholar 

  6. Hameed, B.H., Rahman, A.A.: Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 160, 576–581 (2008)

    Article  CAS  Google Scholar 

  7. Sarswat, A., Mohan, D.: Sustainable development of coconut shell activated carbon (CSAC) & a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. RSC Adv. 6, 85390–85410 (2016)

    Article  CAS  Google Scholar 

  8. Pan, B.C., Xiong, Y., Li, A.M., Chen, J.L., Zhang, Q.X., Jin, X.Y.: Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer. React. Funct. Polym. 53, 63–72 (2002)

    Article  CAS  Google Scholar 

  9. Frascari, D., Bacca, A.E.M., Zama, F., Bertin, L., Fava, F., Pinelli, D.: Olive mill wastewater valorisation through phenolic compounds adsorption in a continuous flow column. Chem. Eng. J. 283, 293–303 (2016)

    Article  CAS  Google Scholar 

  10. Ku, Y., Lee, K.-C.: Removal of phenols from aqueous solution by XAD-4 resin. J. Hazard. Mater. 80, 59–68 (2000)

    Article  CAS  Google Scholar 

  11. Terashima, T., Kawabe, M., Miyabara, Y., Yoda, H., Sawamoto, M.: Polymeric pseudo-crown ether for cation recognition via cation template-assisted cyclopolymerization. Nat. Commun. 4, 3321–3329 (2013)

    Article  Google Scholar 

  12. Wei, P., Xia, B., Zhang, Y., Yu, Y., Yan, X.: A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host-guest interaction. Chem. Commun. 50, 3973–3975 (2014)

    Article  CAS  Google Scholar 

  13. Guo, D.-S., Liu, Y.: Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 41, 5907–5921 (2012)

    Article  CAS  Google Scholar 

  14. Wang, Q., Chen, Y., Liu, Y.: Supramolecular ternary polymer mediated by cucurbituril and cyclodextrin. Polym. Chem. 4, 4192–4198 (2013)

    Article  CAS  Google Scholar 

  15. Harada, A., Takashima, Y., Yamaguchi, H.: Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009)

    Article  CAS  Google Scholar 

  16. Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: 3D-Printed Microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016)

    Article  CAS  Google Scholar 

  17. Morin-Crini, N., Crini, G.: Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polym. Sci. 38, 344–368 (2013)

    Article  CAS  Google Scholar 

  18. Romo, A., Peñas, F.J., Isasi, J.R., García-Zubiri, I.X., González-Gaitano, G.: Extraction of phenols from aqueous solutions by β-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents. React. Funct. Polym. 68, 406–413 (2008)

    Article  CAS  Google Scholar 

  19. Li, H., Meng, B., Chai, S.-H., Liu, H., Dai, S.: Hyper-crosslinked β-cyclodextrin porous polymer: an adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem. Sci. 7, 905–909 (2016)

    Article  CAS  Google Scholar 

  20. Raoov, M., Mohamad, S., bin Abas, M.R., Surikumaran, H.: New macroporous β-cyclodextrin functionalized ionic liquid polymer as an adsorbent for solid phase extraction with phenols. Talanta. 130, 155–163 (2014)

    Article  CAS  Google Scholar 

  21. Xiao, P., Corvini, P., Dudal, Y., Shahgaldian, P.: Design of cyclodextrin-based photopolymers with enhanced molecular recognition properties: a template-free high-throughput approach. Macromolecules. 45, 5692–5697 (2012)

    Article  CAS  Google Scholar 

  22. Xiao, P., Corvini, P.F.X., Dudal, Y., Shahgaldian, P.: Design and high-throughput synthesis of cyclodextrin-based polyurethanes with enhanced molecular recognition properties. Polym. Chem. 4, 942–946 (2013)

    Article  CAS  Google Scholar 

  23. Allouche, N., Fki, I., Sayadi, S.: Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agric. Food Chem. 52, 267–273 (2004)

    Article  CAS  Google Scholar 

  24. Naczk, M., Shahidi, F.: Extraction and analysis of phenolics in food. J. Chromatogr. A. 1054, 95–111 (2004)

    Article  CAS  Google Scholar 

  25. Changenet-Barret, P., Espagne, A., Charier, S., Baudin, J.B., Jullien, L., Plaza, P., Hellingwerf, K.J., Martin, M.M.: Early molecular events in the photoactive yellow protein: role of the chromophore photophysics. Photochem. Photobiol. Sci. 3, 823–829 (2004)

    Article  CAS  Google Scholar 

  26. Lee, P.T., Harfield, J.C., Crossley, A., Pilgrim, B.S., Compton, R.G.: Significant changes in pK(a) between bulk aqueous solution and surface immobilized species: ortho-hydroquinones. RSC Adv. 3, 7347–7354 (2013)

    Article  CAS  Google Scholar 

  27. Kamm, B.: Introduction of biomass and biorefineries. In: Xie, H., Gathergood, N.. (eds.) The role of green chemistry in biomass procesing and conversion, pp. 1–26. Wiley, Hoboken (2013)

    Google Scholar 

  28. Bertin, L., Ferri, F., Scoma, A., Marchetti, L., Fava, F.: Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem. Eng. J. 171, 1287–1293 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the European commission Knowledge Based Bio-Economy (KBBE) through the Water4Crops project (L216-0222-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Shahgaldian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Idrissi, M., Molina Bacca, A.E., Frascari, D. et al. Cyclodextrin-based polymeric materials for the specific recovery of polyphenolic compounds through supramolecular host–guest interactions. J Incl Phenom Macrocycl Chem 88, 35–42 (2017). https://doi.org/10.1007/s10847-017-0708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-017-0708-6

Keywords

Navigation