Skip to main content

Advertisement

Log in

Synthesis of interlocked compounds utilizing the catalytic activity of macrocyclic phenanthroline–Cu complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new method for the synthesis of interlocked compounds utilizing the catalytic activity of macrocyclic phenanthroline–Cu complexes was developed. The macrocyclic phenanthroline–Cu complexes were found to be good catalysts for several coupling reactions, and this catalytic activity was subsequently utilized for the synthesis of [2]rotaxanes and [2]catenanes. By combining the catalytic threading approach with the well-known metal-template method, several rotacatenanes were synthesized. In addition, one-pot synthesis of [3]rotaxanes was achieved in good yield by performing the threading reaction twice in a one-ring component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19

Similar content being viewed by others

References

  1. Sauvage, J.P.: Interlacing molecular threads on transition metals: catenands, catenates, and knots. Acc. Chem. Res. 23(10), 319–327 (1990). doi:10.1021/ar00178a001

    Article  CAS  Google Scholar 

  2. Amabilino, D.B., Stoddart, J.F.: Interlocked and intertwined structures and superstructures. Chem. Rev. 95(8), 2725–2828 (1995). doi:10.1021/cr00040a005

    Article  CAS  Google Scholar 

  3. Jäger, R., Vögtle, F.: A new synthetic strategy towards molecules with mechanical bonds: nonionic template synthesis of amide-linked catenanes and rotaxanes. Angew. Chem. Int. Ed. 36(9), 930–944 (1997). doi:10.1002/anie.199709301

    Article  Google Scholar 

  4. Nepogodiev, S.A., Stoddart, J.F.: Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98(5), 1959–1976 (1998). doi:10.1021/cr970049w

    Article  CAS  Google Scholar 

  5. Raymo, F.M., Stoddart, J.F.: Interlocked macromolecules. Chem. Rev. 99(7), 1643–1664 (1999). doi:10.1021/cr970081q

    Article  CAS  Google Scholar 

  6. Niu, Z., Gibson, H.W.: Polycatenanes. Chem. Rev. 109(11), 6024–6046 (2009). doi:10.1021/cr900002h

    Article  CAS  Google Scholar 

  7. Crowley, J.D., Goldup, S.M., Lee, A.-L., Leigh, D.A., McBurney, R.T.: Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38(6), 1530–1541 (2009). doi:10.1039/B804243H

    Article  CAS  Google Scholar 

  8. Beves, J.E., Blight, B.A., Campbell, C.J., Leigh, D.A., McBurney, R.T.: Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. Int. Ed. 50(40), 9260–9327 (2011). doi:10.1002/anie.201007963

    Article  CAS  Google Scholar 

  9. Forgan, R.S., Sauvage, J.-P., Stoddart, J.F.: Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111(9), 5434–5464 (2011). doi:10.1021/cr200034u

    Article  CAS  Google Scholar 

  10. Neal, E.A., Goldup, S.M.: Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. Chem. Commun. 50(40), 5128–5142 (2014). doi:10.1039/C3CC47842D

    Article  CAS  Google Scholar 

  11. Sauvage, J.-P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31(10), 611–619 (1998). doi:10.1021/ar960263r

    Article  CAS  Google Scholar 

  12. Tian, H., Wang, Q.-C.: Recent progress on switchable rotaxanes. Chem. Soc. Rev. 35(4), 361–374 (2006). doi:10.1039/B512178G

    Article  CAS  Google Scholar 

  13. Harrison, I.T., Harrison, S.: Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89(22), 5723–5724 (1967). doi:10.1021/ja00998a052

    Article  CAS  Google Scholar 

  14. Schill, G.; Zollenkopf, H. Justus Liebigs Ann. Chem. 721, 53–74 (1969)

  15. Hiratani, K., Suga, J.-I., Nagawa, Y., Houjou, H., Tokuhisa, H., Numata, M., Watanabe, K.: A new synthetic method for rotaxanes via tandem Claisen rearrangement, diesterification, and aminolysis. Tetrahedron Lett. 43(33), 5747–5750 (2002). doi:10.1016/S0040-4039(02)01201-7

    Article  CAS  Google Scholar 

  16. Kawai, H., Umehara, T., Fujiwara, K., Tsuji, T., Suzuki, T.: Dynamic covalently bonded rotaxanes cross-linked by imine bonds between the axle and ring: inverse temperature dependence of subunit mobility. Angew. Chem. 118(26), 4387–4392 (2006). doi:10.1002/ange.200600750

    Article  Google Scholar 

  17. Hirose, K., Nishihara, K., Harada, N., Nakamura, Y., Masuda, D., Araki, M., Tobe, Y.: Highly selective and high-yielding rotaxane synthesis via aminolysis of prerotaxanes consisting of a ring component and a stopper unit. Org. Lett. 9(16), 2969–2972 (2007). doi:10.1021/ol070999w

    Article  CAS  Google Scholar 

  18. Ashton, P.R., Baxter, I., Fyfe, M.C.T., Raymo, F.M., Spencer, N., Stoddart, J.F., White, A.J.P., Williams, D.J.: Rotaxane or pseudorotaxane? That is the question! J. Am. Chem. Soc. 120(10), 2297–2307 (1998). doi:10.1021/ja9731276

    Article  CAS  Google Scholar 

  19. Hübner, G.M., Gläser, J., Seel, C., Vögtle, F.: High-yielding rotaxane synthesis with an anion template. Angew. Chem. Int. Ed. 38(3), 383–386 (1999). doi:10.1002/(SICI)1521-3773(19990201)38:3<383:AID-ANIE383>3.0.CO;2-H

    Article  Google Scholar 

  20. Takata, T., Kawasaki, H., Asai, S., Furusho, Y., Kihara, N.: Conjugate addition-approach to end-capping of pseudorotaxanes for rotaxane synthesis. Chem. Lett. 28(3), 223–224 (1999). doi:10.1246/cl.1999.223

    Article  Google Scholar 

  21. Johnston, A.G., Leigh, D.A., Murphy, A., Smart, J.P., Deegan, M.D.: The synthesis and solubilization of amide macrocycles via rotaxane formation. J. Am. Chem. Soc. 118(43), 10662–10663 (1996). doi:10.1021/ja962046r

    Article  CAS  Google Scholar 

  22. Vögtle, F., Händel, M., Meier, S., Ottens-Hildebrandt, S., Ott, F., Schmidt, T.: Template synthesis of the first amide-based rotaxanes. Liebigs Annalen 1995(5), 739–743 (1995). doi:10.1002/jlac.1995199505109

    Article  Google Scholar 

  23. Hunter, C.A., Low, C.M.R., Packer, M.J., Spey, S.E., Vinter, J.G., Vysotsky, M.O., Zonta, C.: Noncovalent assembly of [2]rotaxane architectures. Angew. Chem. Int. Ed. 40(14), 2678–2682 (2001). doi:10.1002/1521-3773(20010716)40:14<2678:AID-ANIE2678>3.0.CO;2-U

    Article  CAS  Google Scholar 

  24. Loeb, S.J., Wisner, J.A.: [3]Rotaxanes employing multiple 1,2-bis(pyridinium) ethane binding sites and dibenzo-24-crown-8 ethers. Chem. Commun. 10, 845–846 (2000). doi:10.1039/B001018I

    Article  Google Scholar 

  25. Davidson, G.J.E., Loeb, S.J., Parekh, N.A., Wisner, J.A.: Zwitterionic [2]rotaxanes utilising anionic transition metal stoppers. J. Chem. Soc., Dalton Trans. 21, 3135–3136 (2001). doi:10.1039/B107257A

    Article  Google Scholar 

  26. Tokunaga, Y., Akasaka, K., Hashimoto, N., Yamanaka, S., Hisada, K., Shimomura, Y., Kakuchi, S.: Using photoresponsive end-closing and end-opening reactions for the synthesis and disassembly of [2]rotaxanes: implications for dynamic covalent chemistry. J. Org. Chem. 74(6), 2374–2379 (2009). doi:10.1021/jo8025143

    Article  CAS  Google Scholar 

  27. Iwamoto, H., Yawata, Y., Fukazawa, Y., Haino, T.: Tether-assisted synthesis of [3]rotaxane by Olefin metathesis. Chem. Lett. 39(1), 24–25 (2010). doi:10.1246/cl.2010.24

    Article  CAS  Google Scholar 

  28. Yu, G., Suzaki, Y., Abe, T., Osakada, K.: Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of ptii complexes. Chemistry 7(1), 207–213 (2012). doi:10.1002/asia.201100617

    CAS  Google Scholar 

  29. Wu, C., Lecavalier, P.R., Shen, Y.X., Gibson, H.W.: Synthesis of a rotaxane via the template method. Chem. Mater. 3(4), 569–572 (1991). doi:10.1021/cm00016a002

    Article  CAS  Google Scholar 

  30. Chambron, J.-C., Heitz, V., Sauvage, J.-P.: A rotaxane with two rigidly held porphyrins as stoppers. J. Chem. Soc. Chem. Commun. 16, 1131–1133 (1992). doi:10.1039/C39920001131

    Article  Google Scholar 

  31. Furusho, Y., Matsuyama, T., Takata, T., Moriuchi, T., Hirao, T.: Synthesis of novel interlocked systems utilizing a palladium complex with 2,6-pyridinedicarboxamide-based tridentate macrocyclic ligand. Tetrahedron Lett. 45(52), 9593–9597 (2004). doi:10.1016/j.tetlet.2004.10.152

    Article  CAS  Google Scholar 

  32. Ogino, H.: Relatively high-yield syntheses of rotaxanes. Syntheses and properties of compounds consisting of cyclodextrins threaded by.alpha.,omega.-diaminoalkanes coordinated to cobalt(III) complexes. J. Am. Chem. Soc. 103(5), 1303–1304 (1981). doi:10.1021/ja00395a091

    Article  CAS  Google Scholar 

  33. Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356(6367), 325–327 (1992)

    Article  CAS  Google Scholar 

  34. Wenz, G., Keller, B.: Threading Cyclodextrin Rings on Polymer Chains. Angew. Chem. Int. Ed. 31(2), 197–199 (1992). doi:10.1002/anie.199201971

    Article  Google Scholar 

  35. Anderson, S., Claridge, T.D.W., Anderson, H.L.: Azo-dye rotaxanes. Angew. Chem. Int. Ed. 36(12), 1310–1313 (1997). doi:10.1002/anie.199713101

    Article  CAS  Google Scholar 

  36. Nakashima, N., Kawabuchi, A., Murakami, H.: Design and synthesis of cyclodextrin-based rotaxanes and polyrotaxanes. J. Incl. Phenom. Mol. Recognit. Chem. 32(2–3), 363–373 (1998). doi:10.1023/A:1008084015958

    Article  CAS  Google Scholar 

  37. Terao, J., Tanaka, Y., Tsuda, S., Kambe, N., Taniguchi, M., Kawai, T., Saeki, A., Seki, S.: Insulated molecular wire with highly conductive π-conjugated polymer core. J. Am. Chem. Soc. 131(50), 18046–18047 (2009). doi:10.1021/ja908783f

    Article  CAS  Google Scholar 

  38. Strutt, N.L., Forgan, R.S., Spruell, J.M., Botros, Y.Y., Stoddart, J.F.: Monofunctionalized pillar[5]arene as a host for alkanediamines. J. Am. Chem. Soc. 133(15), 5668–5671 (2011). doi:10.1021/ja111418j

    Article  CAS  Google Scholar 

  39. Ogoshi, T., Aoki, T., Shiga, R., Iizuka, R., Ueda, S., Demachi, K., Yamafuji, D., Kayama, H., Yamagishi, T.-A.: Cyclic host liquids for facile and high-yield synthesis of [2]rotaxanes. J. Am. Chem. Soc. 134(50), 20322–20325 (2012). doi:10.1021/ja310757p

    Article  CAS  Google Scholar 

  40. Ashton, P.R., Grognuz, M., Slawin, A.M.Z.: Fraser Stoddart, J., Williams, D.J.: The template-directed synthesis of a [2]rotaxane. Tetrahedron Lett. 32(43), 6235–6238 (1991). doi:10.1016/0040-4039(91)80797-A

    Article  CAS  Google Scholar 

  41. Hancock, L.M., Beer, P.D.: Chloride recognition in aqueous media by a rotaxane prepared via a new synthetic pathway. Chem. Eur. J. 15(1), 42–44 (2009). doi:10.1002/chem.200802029

    Article  CAS  Google Scholar 

  42. Dietrich-Buchecker, C.O., Sauvage, J.P., Kintzinger, J.P.: New family of molecules: the metallo-catenanes. Tetrahedron Lett. 24(46), 5095–5098 (1983). doi:10.1016/S0040-4039(00)94050-4

    Article  CAS  Google Scholar 

  43. Aucagne, V., Hänni, K.D., Leigh, D.A., Lusby, P.J., Walker, D.B.: Catalytic “click” rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 128(7), 2186–2187 (2006). doi:10.1021/ja056903f

    Article  CAS  Google Scholar 

  44. Saito, S., Takahashi, E., Nakazono, K.: Synthesis of [2]rotaxanes by the catalytic reactions of a macrocyclic copper complex. Org. Lett. 8(22), 5133–5136 (2006). doi:10.1021/ol062247s

    Article  CAS  Google Scholar 

  45. Bates, C.G., Gujadhur, R.K., Venkataraman, D.: A general method for the formation of aryl–sulfur bonds using copper(I) catalysts. Org. Lett. 4(16), 2803–2806 (2002). doi:10.1021/ol0264105

    Article  CAS  Google Scholar 

  46. Siemsen, P., Livingston, R.C., Diederich, F.: Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 39(15), 2632–2657 (2000). doi:10.1002/1521-3773(20000804)39:15<2632:AID-ANIE2632>3.0.CO;2-F

    Article  CAS  Google Scholar 

  47. Hay, A.S.: Oxidative coupling of acetylenes. II. J. Org. Chem. 27(9), 3320–3321 (1962). doi:10.1021/jo01056a511

    Article  CAS  Google Scholar 

  48. Bates, C.G., Saejueng, P., Venkataraman, D.: Copper-catalyzed synthesis of 1,3-enynes. Org. Lett. 6(9), 1441–1444 (2004). doi:10.1021/ol049706e

    Article  CAS  Google Scholar 

  49. Monnier, F., Turtaut, F., Duroure, L., Taillefer, M.: Copper-catalyzed sonogashira-type reactions under mild palladium-free conditions. Org. Lett. 10(15), 3203–3206 (2008). doi:10.1021/ol801025u

    Article  CAS  Google Scholar 

  50. Santandrea, J., Bédard, A.-C., Collins, S.K.: Cu(I)-catalyzed macrocyclic sonogashira-type cross-coupling. Org. Lett. 16(15), 3892–3895 (2014). doi:10.1021/ol501898b

    Article  CAS  Google Scholar 

  51. Saito, S., Nakazono, K., Takahashi, E.: Template synthesis of [2]rotaxanes with large ring components and tris(biphenyl) methyl group as the blocking group. The relationship between the ring size and the stability of the rotaxanes. J. Org. Chem. 71(19), 7477–7480 (2006)

    Article  CAS  Google Scholar 

  52. Saito, S., Takahashi, E., Wakatsuki, K., Inoue, K., Orikasa, T., Sakai, K., Yamasaki, R., Mutoh, Y., Kasama, T.: Synthesis of large [2]rotaxanes. The relationship between the size of the blocking group and the stability of the rotaxane. J. Org. Chem. 78(8), 3553–3560 (2013). doi:10.1021/jo302800t

    Article  CAS  Google Scholar 

  53. Weisbach, N., Baranova, Z., Gauthier, S., Reibenspies, J.H., Gladysz, J.A.: A new type of insulated molecular wire: a rotaxane derived from a metal-capped conjugated tetrayne. Chem. Commun. 48(61), 7562–7564 (2012). doi:10.1039/C2CC33321J

    Article  CAS  Google Scholar 

  54. Movsisyan, L.D., Kondratuk, D.V., Franz, M., Thompson, A.L., Tykwinski, R.R., Anderson, H.L.: Synthesis of polyyne rotaxanes. Org. Lett. 14(13), 3424–3426 (2012). doi:10.1021/ol301392t

    Article  CAS  Google Scholar 

  55. Movsisyan, L.D., Peeks, M.D., Greetham, G.M., Towrie, M., Thompson, A.L., Parker, A.W., Anderson, H.L.: Photophysics of threaded sp-carbon chains: the polyyne is a sink for singlet and triplet excitation. J. Am. Chem. Soc. 136(52), 17996–18008 (2014). doi:10.1021/ja510663z

    Article  CAS  Google Scholar 

  56. Ugajin, K., Takahashi, E., Yamasaki, R., Mutoh, Y., Kasama, T., Saito, S.: Synthesis of [2]rotaxanes by the copper-mediated threading reactions of aryl iodides with alkynes. Org. Lett. 15(11), 2684–2687 (2013). doi:10.1021/ol400992p

    Article  CAS  Google Scholar 

  57. Megiatto, J.D., Schuster, D.I.: Alternative demetalation method for Cu(I)-phenanthroline-based catenanes and rotaxanes. Org. Lett. 13(7), 1808–1811 (2011). doi:10.1021/ol200304d

    Article  CAS  Google Scholar 

  58. Sato, Y., Yamasaki, R., Saito, S.: Synthesis of [2]catenanes by oxidative intramolecular diyne coupling mediated by macrocyclic copper(I) complexes. Angew. Chem. Int. Ed. 48(3), 504–507 (2009). doi:10.1002/anie.200804864

    Article  CAS  Google Scholar 

  59. Amabilino, D.B., Ashton, P.R., Bravo, J.A., Raymo, F.M., Stoddart, J.F., White, A.J.P., Williams, D.J.: Molecular meccano, 52 template-directed synthesis of a rotacatenane. Eur. J. Org. Chem. 1999(6), 1295–1302 (1999). doi:10.1002/(SICI)1099-0690(199906)1999:6<1295:AID-EJOC1295>3.0.CO;2-Z

    Article  Google Scholar 

  60. Barin, G., Coskun, A., Friedman, D.C., Olson, M.A., Colvin, M.T., Carmielli, R., Dey, S.K., Bozdemir, O.A., Wasielewski, M.R., Stoddart, J.F.: A multistate switchable [3]rotacatenane. Chem. Eur. J. 17(1), 213–222 (2011). doi:10.1002/chem.201002152

    Article  CAS  Google Scholar 

  61. Hayashi, R., Wakatsuki, K., Yamasaki, R., Mutoh, Y., Kasama, T., Saito, S.: Synthesis of rotacatenanes by the combination of Cu-mediated threading reaction and the template method: the dual role of one ligand. Chem. Commun. 50(2), 204–206 (2014). doi:10.1039/C3CC47425A

    Article  CAS  Google Scholar 

  62. Yerin, A., Wilks, E.S., Moss, G.P., Harada, A.: Nomenclature for rotaxanes and pseudorotaxanes—(IUPAC recommendations 2008). Pure Appl. Chem. 80(9), 2041–2068 (2008). doi:10.1351/pac200880092041

    Article  CAS  Google Scholar 

  63. Klotz, E.J.F., Claridge, T.D.W., Anderson, H.L.: Homo- and hetero-[3]rotaxanes with two π-systems clasped in a single macrocycle. J. Am. Chem. Soc. 128(48), 15374–15375 (2006). doi:10.1021/ja0665139

    Article  CAS  Google Scholar 

  64. Prikhod’ko, A.I., Durola, F., Sauvage, J.-P.: Iron(II)-templated synthesis of [3]rotaxanes by passing two threads through the same ring. J. Am. Chem. Soc. 130(2), 448–449 (2007). doi:10.1021/ja078216p

    Article  Google Scholar 

  65. Cheng, H.M., Leigh, D.A., Maffei, F., McGonigal, P.R., Slawin, A.M.Z., Wu, J.: En route to a molecular sheaf: active metal template synthesis of a [3]rotaxane with two axles threaded through one ring. J. Am. Chem. Soc. 133(31), 12298–12303 (2011). doi:10.1021/ja205167e

    Article  CAS  Google Scholar 

  66. Yamashita, Y., Mutoh, Y., Yamasaki, R., Kasama, T., Saito, S.: Synthesis of [3]rotaxanes that utilize the catalytic activity of a macrocyclic phenanthroline–Cu complex: remarkable effect of the length of the axle precursor. Chem. Eur. J. 21(5), 2139–2145 (2015). doi:10.1002/chem.201405090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the Organizing Committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2014 and the opportunity to write this review. The author acknowledges Dr. Ryu Yamasaki, Dr. Yuichiro Mutoh, and all collaborators for their significant contribution. The author thanks Dr. Takeshi Kasama (Tokyo Medical and Dental University) for performing MALDI-TOF MS analysis. This work was supported by JSPS KAKENHI Grant Number 26410125 and 21655017, Yamada Science Foundation, and the UBE Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Saito.

Additional information

This article is selected for “HGCS Japan Award of Excellence 2014”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, S. Synthesis of interlocked compounds utilizing the catalytic activity of macrocyclic phenanthroline–Cu complexes. J Incl Phenom Macrocycl Chem 82, 437–451 (2015). https://doi.org/10.1007/s10847-015-0511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0511-1

Keywords

Navigation