Skip to main content

Advertisement

Log in

Chiral recognition of abacavir enantiomers by (2-hydroxy)propyl-β-cyclodextrin: UHPLC, NMR and DFT studies

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The diastereomeric complexation of both abacavir (ABA) and its enantiomer (ABAE) with (2-hydroxy)propyl-β-cyclodextrin (2HPβCD) with a degree of substitution of seven was studied. The apparent binding constants of diasteromeric complexes, ABA-2HPβCD and ABAE-2HPβCD were determined by ultra high-pressure liquid chromatography (UHPLC) and found to be 517.0 and 684.4 M−1 respectively. The stoichiometry of the complexes was determined by UHPLC and by the continuous variation method using nuclear magnetic resonance spectroscopy giving 1:1 complexes. The apparent binding constants decrease as the temperatures increases. The observed enantio-differentiation was analyzed theoretically by density functional theory at the PBE/6-31 g** level using a polarizable continuous model (PCM) for solvent effects, the most stable complexes are the ones in which the chiral cyclopentenyl moiety is included in the cavity of CD and the protonated purine ring interact with the hydroxypropyl groups of 2HPβCD. The differences in stability of diasteromeric complexes, due to different intermolecular interactions are consistent with experimental data, providing further insights in the formation of inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Global Industry Analysts, Inc.: Chiral technology: a global strategic business report. http://www.prweb.com/releases/chiral_technology/chiral_separation/prweb9369455.htm. Accessed 01 October 2014

  2. Nguyen, L.A., He, H., Pham-Huy, C.: Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006)

    CAS  Google Scholar 

  3. Stalcup, A.M.: Chiral separations. Ann. Rev. Anal. Chem. 3, 341–363 (2010)

    Article  CAS  Google Scholar 

  4. Cancelliere, G., Ciogli, A., D’Acquarica, I., Gasparrini, F., Kocergin, J., Misiti, D., Pierini, M., Ritchie, H., Simone, P., Villani, C.: Transition from enantioselective high performance to ultra-high performance liquid chromatography: a case study of a brush-type chiral stationary phase based on sub-5-micron to sub-2-micron silica particles. J. Chromatogr. A 1217, 990–999 (2010)

    Article  CAS  Google Scholar 

  5. Hoffmann, C.V., Laemmerhofer, M., Lindner, W.: Novel strong cation-exchange type chiral stationary phase for the enantiomer separation of chiral amines by high-performance liquid chromatography. J. Chromatogr. A 1161, 242–251 (2007)

    Article  CAS  Google Scholar 

  6. Ma, S., Shen, S., Haddad, N., Tang, W., Wang, J., Lee, H., Yee, N., Senanayake, C., Grinberg, N.: Chromatographic and spectroscopic studies on the chiral recognition of sulfated β-cyclodextrin as chiral mobile phase additive: enantiomeric separation of a chiral amine. J. Chromatogr. A 1216, 1232–1240 (2009)

    Article  CAS  Google Scholar 

  7. Yu, L., Wang, S., Zeng, S.: Chiral mobile phase additives in HPLC enantioseparations. In: Scriba, G.K.E. (ed.) Chiral separations: methods and protocols, methods in molecular biology, vol. 970, pp. 221–231. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Nováková, L., Matysová, L., Solich, P.: Advantages of application of UPLC in pharmaceutical analysis. Talanta 68, 908–918 (2006)

    Article  Google Scholar 

  9. Reyes-Reyes, M.L., Roa-Morales, G., Melgar-Fernández, R., Reyes-Pérez, H., Balderas-Hernández, P.: UHPLC determination of enantiomeric purity of sertraline in the presence of its production impurities. Chromatographia 77, 1315–1321 (2014)

    Article  CAS  Google Scholar 

  10. Armstrong, D.W., Ward, T.J., Armstrong, R.D., Beesley, T.E.: Separation of drug stereoisomers by the formation of β-cyclodextrin inclusion complexes. Science 232, 1132–1135 (1986)

    Article  CAS  Google Scholar 

  11. Lipkowitz, K.B., Coner, R., Peterson, M.A., Morreale, A., Shackelford, J.: The principle of maximum chiral discrimination: chiral recognition in permethyl-β-cyclodextrin. J. Org. Chem. 63, 732–745 (1998)

    Article  CAS  Google Scholar 

  12. Foster, R.H., Faulds, D.: Abacavir. Drugs 55, 729–736 (1998)

    Article  CAS  Google Scholar 

  13. Seshachalam, U., Narasimha-Rao, D.V.L., Haribabu, B., Chandrasekhar, K.B.: Chiral LC for separation of the enantiomers of abacavir sulfate. Chromatographia 64, 745–748 (2006)

    Article  CAS  Google Scholar 

  14. Abacavir sulfate monograph in The United States Pharmacopoeial convention. USP 36 NF31. Baltimore, MD: United Book Press, Inc. (2013)

  15. Grillo, R., Melo, N.F.S., Moraes, C.M., de Lima, R., Menezes, C.M.S., Ferreira, E.I., Rosa, A.H., Fernandes, L.F.: Study of the interaction between hydroxymethylnitrofurazone and 2-hydroxypropyl-β-cyclodextrin. J. Pharm. Biomed. Anal. 47, 295–302 (2008)

    Article  CAS  Google Scholar 

  16. Fifere, A., Marangoci, N., Maier, S., Coroaba, A., Maftei, D., Pinteala, M.: Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J. Org. Chem. 8, 2191–2201 (2012)

    Article  CAS  Google Scholar 

  17. Jana, M., Bandyopadhyay, S.: Molecular dynamics study of β-cyclodextrin–phenylalanine (1:1) inclusion complex in aqueous medium. J. Phys. Chem. B 117, 9280–9287 (2013)

    Article  CAS  Google Scholar 

  18. Passos, J.J., De Sousa, F.B., Lula, I.S., Barreto, A.B., Lopes, J.F., De Almeida, W.B., Sinisterra, R.D.: Multi-equilibrium system based on sertraline and β-cyclodextrin supramolecular complex in aqueous solution. Int. J. Pharm. 42, 24–33 (2011)

    Article  Google Scholar 

  19. Moraes, C.M., Abrami, P., de Paula, E., Braga, A.F.A., Fraceto, L.F.: Study of the interaction between S(−) bupivacaine and 2-hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 331, 99 (2007)

    Article  CAS  Google Scholar 

  20. Pîrnău, A., Mic, M., Bogdam, M., Turcu, I.: Characterization of β-cyclodextrin inclusion complex with procaine hydrochloride by 1H NMR and ITC. J. Incl. Phenom. Macrocycl. Chem. 79, 283–289 (2013)

    Article  Google Scholar 

  21. Ufimtsev, I.S., Martinez, T.J.: Quantum chemistry on graphical processing units. 3. Analytical energy gradients and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009)

    Article  CAS  Google Scholar 

  22. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 method. J. Chem. Phys. 110, 6158–6170 (1999)

    Article  CAS  Google Scholar 

  23. Gaussian 09, Revision D.01, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, M. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian, Inc., Wallingford CT, (2009)

  24. Scalmani, G., Frisch, J.M.: Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010)

    Article  Google Scholar 

  25. López-Nicolás, J.M.: García- Carmona, F.: Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC. Food Chem. 109, 868–875 (2008)

    Article  Google Scholar 

  26. Filipa, M.A., Sancho, M.I., Gasull, E.I.: Determination of apparent binding constants by NSAIDs-βcyclodextrin complexes: HPLC, phase solubility diagrams and theoretical studies. J. Incl. Phenom. Macrocycl. Chem. 77, 223–230 (2013)

    Article  Google Scholar 

  27. Parr, R.G., Yang, W.: Density functional theory of atoms and molecules. Oxford University Press, New York (1989)

    Google Scholar 

  28. Ireta, J., Neugebauer, J., Scheffler, M.: On the Accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J. Phys. Chem. A 108, 5692–5698 (2004)

    Article  CAS  Google Scholar 

  29. Arenzano, J.B., del Campo, J.M., Virues, J.O., Ramirez-Montes, P.I., Santillán, R., Rivera, J.M.: Theoretical study of the hydrogen bonding interaction between Levodopa and a new functionalized pillared coordination polymer designed as a carrier system. J. Mol. Struct. 1083, 106–110 (2015)

    Article  CAS  Google Scholar 

  30. Yong, C.W., Washington, C., Smith, W.: Structural behavior of hydroxypropyl-β-cyclodextrin in water: molecular dynamic simulation studies. Pharm. Res. 25, 1092–1099 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thanks to Secretaría de Investigación y Estudios Avanzados, Universidad Autónoma del Estado de México for the financial support trough the project 3864/2015PIC. Authors are also grateful to Signa S. A. de C. V., for some of the materials and instrumentation used during the development of this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. L. Reyes-Reyes or Nelly Gonzalez-Rivas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Reyes, M.L., Roa-Morales, G., Melgar-Fernández, R. et al. Chiral recognition of abacavir enantiomers by (2-hydroxy)propyl-β-cyclodextrin: UHPLC, NMR and DFT studies. J Incl Phenom Macrocycl Chem 82, 373–382 (2015). https://doi.org/10.1007/s10847-015-0499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0499-6

Keywords

Navigation