Skip to main content
Log in

Macrocycles embedding phenothiazine or similar nitrogen and/or sulphur containing heterocycles

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Macrocycles emerged as an important class of useful compounds with multiple applications ranging from selective complexation of different anions, cations or neutral molecules to the development of new sensors, materials with improved properties and biologically active compounds. In this review we focus our discussion on the synthesis and structural analysis of macrocycles containing dibenzoheterocycles with sulphur and/or nitrogen atoms in the central six-membered ring (i.e. 10H-phenothiazine, 9,10-dihydroacridine or acridane, acridone, thianthrene, phenoxathiine, acridine, phenazine). We further highlight selected application of these compounds as host molecules, DNA intercalating agents or enzyme inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Chart 1
Chart 2
Chart 3
Chart 4
Schema 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Chart 5
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Chart 6
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Chart 7
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Chart 8
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Chart 9
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44

Similar content being viewed by others

References

  1. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)

    Article  CAS  Google Scholar 

  2. Steed, J.W., Atwood, J.L: Supramolecular Chemistry, pp. 114–117. Wiley, New York (2009)

  3. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interactions with cations and anions. Chem. Rev. 91, 1721–2085 (1991)

    Article  CAS  Google Scholar 

  4. Schneider, H.-J., Yatsimirsky, A.K.: Selectivity in supramolecular host–guest complexes. Chem. Soc. Rev. 37, 263–277 (2008)

    Article  CAS  Google Scholar 

  5. Liang, X., Sadler, P.J.: Cyclam complexes and their applications in medicine. Chem. Soc. Rev. 33, 246–266 (2004)

    Article  CAS  Google Scholar 

  6. Tfouni, E., Ferreira, K.Q., Doro, F.G., da Silva, R.S., da Rocha, Z.N.: Ru(II) and Ru(III) complexes with cyclam and related species. Coord. Chem. Rev. 249, 405–418 (2005)

    Article  CAS  Google Scholar 

  7. Hubin, T.J.: Synthesis and coordination chemistry of topologically constrained azamacrocycles. Coord. Chem. Rev. 241, 27–46 (2003)

    Article  CAS  Google Scholar 

  8. Ingham, A., Rodopoulos, M., Coulter, K., Radopoulos, T., Subramanian, S., McAuley, A.: Synthesis, characterization and reactivity of some macrobicyclic and macrotricyclic hetero-clathrochelate complexes. Coord. Chem. Rev. 233, 255–271 (2002)

    Article  Google Scholar 

  9. McAuley, A., Subramanian, S.: Formation of multinuclear complexes: new developments from cyclam derivatives. Coord. Chem. Rev. 200, 75–103 (2000)

    Article  Google Scholar 

  10. Elias, H.: Kinetics and mechanism of metal complex formation with N4-donor macrocycles of the cyclam type. Coord. Chem. Rev. 187, 37–73 (1999)

    Article  CAS  Google Scholar 

  11. Shao, M., Dongare, P., Dawe, L.N., Thompson, D.W., Zhao, Y.: Biscrown-annulated TTFAQ-dianthracene hybrid: synthesis, structure, and metal ion sensing. Org. Lett. 12, 3050–3053 (2010)

    Article  CAS  Google Scholar 

  12. Demeter, D., Blanchard, P., Allain, M., Grosu, I., Roncali, J.: Synthesis and metal cation complexing properties of crown-annelated terthiophenes containing 3,4-ethylenedioxythiophene. J. Org. Chem. 72, 5285–5290 (2007)

    Article  CAS  Google Scholar 

  13. Demeter, D., Blanchard, P., Grosu, I., Roncali, J.: Electropolymerization of crown-annelated bithiophenes. Electrochem. Commun. 9, 1587–1591 (2007)

    Article  CAS  Google Scholar 

  14. Demeter, D., Lar, C., Roncali, J., Grosu, I.: Macrocycles with bithiophene units: synthesis, structure, and electrochemical properties. Tetrahedron Lett. 54, 1460–1462 (2013)

    Article  CAS  Google Scholar 

  15. Mietzsch, F.: Die Entwicklung der Antihistaminmittel und zentral dämpfenden Mittel. Angew. Chem. 66, 363–371 (1954)

    Article  CAS  Google Scholar 

  16. Ionescu, M., Mantsch, H.: Phenoxazines. Adv. Heterocycl. Chem. 8, 83–113 (1967)

    Article  CAS  Google Scholar 

  17. Bodea, C., Silberg, I.: Recent advances in the chemistry of phenothiazines. Adv. Heterocycl. Chem. 9, 321–460 (1968)

    Article  CAS  Google Scholar 

  18. Silberg, I.A., Cormos, G., Oniciu, D.C.: Retrosynthetic approach to the synthesis of phenothiazines. Adv. Heterocycl. Chem. 90, 205–237 (2006)

    Article  Google Scholar 

  19. Wagner, C., Wagenknecht, H.-A.: Reductive electron transfer in phenothiazine-modified DNA is dependent on the base sequence. Chem. Eur. J. 11, 1871–1876 (2005)

    Article  CAS  Google Scholar 

  20. Motohashi, N., Kawase, M., Molnár, J., Ferenczy, L., Wesolowska, O., Hendrich, A.B., Bobrowska-Hägerstrand, M., Hägerstrand, H., Michalak, K.: Antimicrobial activity of N-acylphenothiazines and their influence on lipid model membranes and erythrocyte membranes. Arzneimittel-Forsch. Drug Res. 53, 590–599 (2003)

    CAS  Google Scholar 

  21. Tierney, M.T., Sykora, M., Khan, S.I., Grinstaff, M.W.: Photoinduced electron transfer in an oligodeoxynucleotide duplex: observation of the electron-transfer intermediate. J. Phys. Chem. B 104, 7574–7576 (2000)

    Article  CAS  Google Scholar 

  22. Tierney, M.T., Grinstaff, M.W.: Synthesis and characterization of fluorenone-, anthraquinone-, and phenothiazine-labeled oligodeoxynucleotides: 5‘-probes for DNA redox chemistry. J. Org. Chem. 65, 5355–5359 (2000)

    Article  CAS  Google Scholar 

  23. Bende, A., Grosu, I., Turcu, I.: Molecular modeling of phenothiazine derivatives: self-assembling properties. J. Phys. Chem. A 114, 12479–12489 (2010)

    Article  CAS  Google Scholar 

  24. Tinker, L.A., Bard, A.J.: Electrochemistry in liquid sulfur dioxide. 1. Oxidation of thianthrene, phenothiazine, and 9,10-diphenylanthracene. J. Am. Chem. Soc. 101, 2316–2319 (1979)

    Article  CAS  Google Scholar 

  25. Eliel, E.L., Wilen, S.H.: Stereochemistry of Organic Compounds, p. 783. Wiley, New York (1994)

  26. Bell, J.D., Blount, J.F., Briscoe, O.V., Freeman, H.C.: The crystal structure of phenothiazine. Chem. Commun. (Lond.) 24, 1656–1657 (1968)

    Article  Google Scholar 

  27. Pan, D., Philips, D.L.: Raman and density functional study of the S0 state of phenothiazine and the radical cation of phenothiazine. J. Phys. Chem. A 103, 4737–4743 (1999)

    Article  CAS  Google Scholar 

  28. Liu, Y., Li, J., Cao, H., Qu, H., Chen, Z., Gong, Q., Xu, S., Cao, S.: Conjugated polymers containing phenothiazine moieties in the main chain. Polym. Adv. Technol. 17, 468–473 (2006)

    Article  CAS  Google Scholar 

  29. Kim, S.-K., Lee, J.-H., Hwang, D.-H.: EL properties of an alternating copolymer composed of phenothiazine and thiophene heterocycles. Synth. Met. 152, 201–204 (2005)

    Article  CAS  Google Scholar 

  30. Lapkowski, M., Plewa, S., Stolarczyk, A., Doskocz, J., Soloducho, J., Cabaj, J., Bartoszek, M., Sulkowski, W.W.: Electrochimical synthesis of polymers with alternate phenothiazine and bithiophene units. Electrochim. Acta 53, 2545–2552 (2008)

    Article  CAS  Google Scholar 

  31. Bucci, N., Müller, T.J.J.: First syntheses and electronic properties of (oligo)phenothiazine-C60 dyads. Tetrahedron Lett. 47, 8323–8327 (2006)

    Article  CAS  Google Scholar 

  32. Bucci, N., Müller, T.J.J.: Synthesis and electronic properties of (oligo)phenothiazine-ethynyl-hydro-C60 dyads. Tetrahedron Lett. 47, 8329–8332 (2006)

    Article  CAS  Google Scholar 

  33. Klumpp, T., Linsenmann, M., Larson, S.L., Limoges, B.R., Bürssner, D., Krissinel, E.B., Elliott, M., Steiner, U.E.: Spin chemical control of photoinduced electron-transfer processes in ruthenium(II)-trisbipyridine-based supramolecular triads. J. Am. Chem. Soc. 121, 1076–1087 (1999)

    Article  CAS  Google Scholar 

  34. Poddutoori, P.K., Sadanayaka, A.S.D., Zarrabi, N., Hasobe, T., Ito, O., van der Est, A.: Sequential charge separation in two axially linked phenothiazine-aluminum(III) porphyrin-fullerene triads. J. Phys. Chem. A 115, 709–717 (2011)

    Article  CAS  Google Scholar 

  35. Hauck, M., Schönhaber, J., Zucchero, A.J., Hardcastle, K.I., Müller, T.J.J., Bunz, U.H.F.: Phenothiazine cruciforms: synthesis and metallochromic properties. J. Org. Chem. 72, 6714–6725 (2007)

    Article  CAS  Google Scholar 

  36. Sailer, M., Franz, A.W., Müller, T.J.J.: Synthesis and electronic properties of monodisperse oligophenothiazines. Chem. Eur. J. 14, 2602–2614 (2008)

    Article  CAS  Google Scholar 

  37. Franz, A.W., Zhou, Z., Turdean, R., Wagener, A., Sarkar, B., Hartmann, M., Ernst, S., Thiel, W.R., Müller, T.J.J.: Carbamate-linked (oligo)phenothiazines in mesoporous silica by post-synthetic grafting: fluorescent redox-active hybrid materials. Eur. J. Org. Chem. 2009, 3895–3905 (2009)

  38. Turdean, R., Bogdan, E., Terec, A., Petran, A., Vlase, L., Turcu, I., Grosu, I.: Synthesis and structure of new 3,7,10-substituted-phenothiazine derivatives. Cent. Eur. J. Chem. 7, 111–117 (2009)

    Article  CAS  Google Scholar 

  39. Franz, A.W., Stoycheva, S., Himmelhaus, M., Müller, T.J.J.: Synthesis, electronic properties and self-assembly on Au{111} of thiolated (oligo)phenothiazines. Beilstein J. Org. Chem. 6, 72 (2010)

  40. Sailer, M., Nonnenmacher, M., Oeser, T., Müller, T.J.J.: Synthesis and electronic properties of 3-acceptor-substituted and 3,7-bisacceptor-substituted phenothiazines. Eur. J. Org. Chem. 2006, 423–435 (2006)

  41. Sailer, M., Gropeanu, R.-A., Müller, T.J.J.: Practical synthesis of iodo phenothiazines: a facile access to electrophore Building BLOCKS. J. Org. Chem. 68, 7509–7512 (2003)

    Article  CAS  Google Scholar 

  42. Franz, A.W., Müller, T.J.J.: Facile synthesis of functionalized oligophenothiazines via one-pot bromine-lithium exchange-borylation-Suzuki coupling (BLEBS). Synthesis 2008, 1121–1125 (2008)

  43. Zhou, Z., Franz, A.W., Bay, S., Sarkar, B., Seifert, A., Yang, P., Wagener, A., Ernst, S., Pagels, M., Müller, T.J.J., Thiel, W.R.: Redox active mesoporous hybrid materials by in situ syntheses with urea-linked triethoxysilylated phenothiazines. Chem. Asian J. 5, 2001–2015 (2010)

    Article  CAS  Google Scholar 

  44. Franz, A.W., Rominger, F., Müller, T.J.J.: Synthesis and electronic properties of sterically demanding N-arylphenothiazines and unexpected Buchwald–Hartwig aminations. J. Org. Chem. 73, 1795–1802 (2008)

    Article  CAS  Google Scholar 

  45. Krämer, C.S., Zeitler, K., Müller, T.J.J.: Synthesis of functionalized ethynylphenothiazine fluorophores. Org. Lett. 2, 3723–3726 (2000)

    Article  Google Scholar 

  46. Müller, T.J.J.: First synthesis and electronic properties of ring-alkynylated phenothiazines. Tetrahedron Lett. 40, 6563–6566 (1999)

    Article  Google Scholar 

  47. Krämer, C.S., Zeitler, K., Müller, T.J.J.: First synthesis and electronic properties of (hetero)aryl bridged and directly linked redox active phenothiazinyl dyads and triads. Tetrahedron Lett. 42, 8619–8624 (2001)

    Article  Google Scholar 

  48. Kormos, A., Sveiczer, A., Födi, T., Rohonczi, A., Huszthy, P.: Synthesis of novel 18-crown-6 type ligands containing a phenothiazine 5,5-dioxide unit. Arkivoc 4, 227–239 (2013)

    Article  Google Scholar 

  49. Medruţ, I., Turdean, R., Gropeanu, R., Pop, F., Toupet, L., Hădade, N.D., Bogdan, E., Grosu, I.: Macrocycles with a phenothiazine core: synthesis, structural analysis, and electronic properties. Tetrahedron Lett. 54, 1107–1111 (2013)

    Article  Google Scholar 

  50. Petran, A., Terec, A., Bogdan, E., Soran, A., Lakatos, E., Grosu, I.: Thiophene-based macrocycles via the Suzuki-Miyaura cross coupling reaction. Tetrahedron 70, 6803–6809 (2014)

    Article  CAS  Google Scholar 

  51. Memminger, K., Oeser, T., Müller, T.J.J.: Phenothiazinophanes: synthesis, structure, and intramolecular electronic communication. Org. Lett. 10, 2797–2800 (2008)

    Article  CAS  Google Scholar 

  52. Rajakumar, P., Kanagalatha, R.: Synthesis and optoelectrochemical properties of novel Phenothiazinophanes. Tetrahedron Lett. 48, 8496–8500 (2007)

    Article  CAS  Google Scholar 

  53. Hauck, M., Stolte, M., Schönhaber, J., Kuball, H.-G., Müller, T.J.J.: Synthesis, electronic, and electro-optical properties of emissive solvatochromic phenothiazinyl merocyanine dyes. Chem. Eur. J. 17, 9984–9998 (2011)

    Article  CAS  Google Scholar 

  54. Petran, A., Bogdan, E., Terec, A., Grosu, I.: Podands with 10-ethyl-3,7-dithienyl-10H-phenothiazine core: synthesis and structural analysis. Rev. Roum. Chim. 57, 345–351 (2012)

    CAS  Google Scholar 

  55. Petry, C., Lang, M., Staab, H.A., Bauer, H.: Phenothiazine-bipyridinium oligooxacyclophanes. Angew. Chem. Int. Ed. Engl. 32, 1711–1714 (1993)

    Article  Google Scholar 

  56. Bauer, H., Stier, F., Petry, C., Knorr, A., Stadler, C., Staab, H.A.: Phenothiazine-bipyridinium cyclophanes. Eur. J. Org. Chem. 17, 3255–3278 (2001)

  57. Sakaguchi, K-ichi., Kamimura, T., Uno, H., Mori, S., Ozako, S., Nobukuni, H., Ishida, M., Tani, F.: Phenothiazine-bridged cyclic porphyrin dimers as high-affinity hosts for fullerenes and linear array of C60 in self-assembled porphyrin nanotube. J. Org. Chem. 79, 2980–2992 (2014)

  58. Zhang, Y., Ballard, C.E., Zheng, S.-L., Gao, X., Ko, K.-C., Yang, H., Brandt, G., Lou, X., Tai, P.C., Lu, C.-D., Wang, B.: Design, synthesis and evaluation of efflux substrate-metal chelator conjugates as potential anti-microbial agents. Bioorg. Med. Chem. Lett. 17, 707–711 (2007)

    Article  CAS  Google Scholar 

  59. Chiron, J., Galy, J.-P.: Reactivity of the acridine ring: a review. Synthesis 3, 313–325 (2004)

  60. Galdino-Pitta, M.R., Pitta, M.G.R., Lima, M.C.A., Galdino, S.L., Pitta, I.R.: Niche for acridine derivatives in anticancer therapy. Mini. Rev. Med. Chem. 13, 1256–1271 (2013)

    Article  CAS  Google Scholar 

  61. Belmont, P., Bosson, J., Godet, T., Tiano, M.: Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med. Chem. 7, 139–169 (2007)

    Article  CAS  Google Scholar 

  62. Molnár, J., Sakagami, H., Motohashi, N.: Diverse biological activities displayed by phenothiazines, benzo[a]phenothiazines and benz[c]acridins. Anticancer Res. 13, 1019–1026 (1993)

    Google Scholar 

  63. Kumar, R., Kaur, M., Silakari, O.: Chemistry and biological activities of thioacridines/thioacridones. Mini. Rev. Med. Chem. 13, 1220–1230 (2013)

    Article  CAS  Google Scholar 

  64. Sepulveda, C.S., Fascio, M.L., Garcia, C.C., D’Accorso, N.B., Damonte, E.B.: Acridones as antiviral agents: synthesis, chemical and biological properties. Curr. Med. Chem. 20, 2402–2414 (2013)

    Article  CAS  Google Scholar 

  65. Liu, C., Wang, L.: DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans. 2009, 227–239 (2009)

  66. Demchenko, Y.N., Brossalina, E.B., Zenkova, M.A., Vlassov, V.V.: Acridine-based macrocycles as potential probes for studies of the structures of nucleic acids. Russ. Chem. Bull. 51, 1212–1216 (2002)

    Article  CAS  Google Scholar 

  67. Kaiser, M., de Cian, A., Sainlos, M., Renner, C., Mergney, J.-L., Teulade-Fichou, M.-P.: Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. Org. Biomol. Chem. 4, 1049–1057 (2006)

    Article  CAS  Google Scholar 

  68. Bazzicalupi, C., Chioccioli, M., Sissi, C., Porcú, E., Bonaccini, C., Pivetta, C., Bencini, A., Giorgi, C., Valtancoli, B., Melani, F., Gratteri, P.: Modeling and biological investigations of an unusual behavior of novel synthesized acridine-based polyamine ligands in the binding of double helix and G-quadruplex DNA. ChemMedChem 5, 1995–2005 (2010)

    Article  CAS  Google Scholar 

  69. Slama-Schwok, A., Peronnet, F., Hantz-Brachet, E., Taillendier, E., Teulade-Fichou, M.-P., Vigneron, J.-P., Best-Belpomme, M., Lehn, J.-M.: A macrocyclic bis-acridine shifts the equilibrium from duplexes towards DNA hairpins. Nucleic Acids Res. 25, 2574–2581 (1997)

    Article  CAS  Google Scholar 

  70. Berthet, N., Michon, J., Lhome, J., Teulade-Fichou, M.-P., Vigneron, J.P., Lehn, J.-M.: Recognition of abasic sites in DNA by a cyclobisacridine molecule. Chem. Eur. J. 5, 3625–3630 (1999)

    Article  CAS  Google Scholar 

  71. Cudic, P., Vigneron, J.-P., Lehn, J.-M., Cesario, M., Prangé, T.: Molecular recognition of azobenzene dicarboxylates by acridine-based receptor molecules; Crystal structure of the supramolecular inclusion complex of trans-3,3′-azobenzene dicarboxylate with a cyclo-bis-intercaland receptor. Eur. J. Org. Chem. 1999, 2479–2484 (1999)

  72. Zimmerman, S.C., Lamberson, C.R., Cory, M., Fairley, T.A.: Topologically constrained bifunctional intercalators: DNA intercalation by a macrocyclic bisacridine. J. Am. Chem. Soc. 111, 6805–6809 (1989)

    Article  CAS  Google Scholar 

  73. Somogyi, L., Samu, E., Huszthy, P., Lázár, A., Áangyán, J.G., Péter, R., Surján, M.D., Hollósi, M.: Circular dichroism of host-guest complexes of achiral pyridino- and phenazino-18-crown-6 ligands with the enanatiomers of chiral aralkyl ammonium salts. Chirality 13, 109–117 (2001)

    Article  CAS  Google Scholar 

  74. Szalay, L., Farkas, V., Vass, E., Hollósi, M., Móczár, I., Pintér, Á., Huszthy, P.: Synthesis and selective lead(II) binding of achiral and enantiomerically pure chiral acridono-18-crown-6 ether type ligands. Tetrahedron Asymmetry 15, 1487–1493 (2004)

    Article  CAS  Google Scholar 

  75. Kertész, J., Huszthy, P., Kormos, A., Bertha, F., Horváth, V., Horvai, G.: Synthesis of new optically active acridino-18-crown-6 ligands and studies of their potentiometric selectivity toward the enantiomers of protonated 1-phenylethylamine and metal ions. Tetrahedron Asymmetry 20, 2795–2801 (2009)

    Article  Google Scholar 

  76. Teulade-Fichou, M.-P., Vigneron, J.-P., Lehn, J.-M.: Molecular recogition of nucleosides and nucleotides by a water-soluble cyclo-bis-intercaland receptor based on acridine subunits. Supramol. Chem. 5, 139–147 (1995)

    Article  CAS  Google Scholar 

  77. Kertész, J., Móczár, I., Kormos, A., Baranyai, P., Kubinyi, M., Tóth, K., Huszthy, P.: Synthesis and enantiomeric recognition studies of dialkyl-substituted 18-crown-6 ethers containing an acridine fluorophore unit. Tetrahedron Asymmetry 22, 684–689 (2011)

    Article  Google Scholar 

  78. Huszthy, P., Köntös, Z., Vermes, B., Pintér, Á.: Synthesis of novel fluorescent acridono- and thioacridono-18-crown-6 ligands. Tetrahedron 57, 4967–4975 (2001)

    Article  CAS  Google Scholar 

  79. Neelakadan, P.P., Sanju, K.S., Ramaiah, D.: Effect of bridging units on photophysical and DNA binding properties of a few cyclophanes. Photochem. Photobiol. 86, 282–289 (2010)

    Article  Google Scholar 

  80. Huszthy, P., Samu, E., Vermes, B., Mezey-Vándor, G., Nógrádi, M., Bradshaw, J.S., Izatt, R.M.: Synthesis of novel acridino- and phenazino-18-crown-6 ligands and their optically pure dimethyl-substituted analogues for molecular recognition studies. Tetrahedron 55, 1491–1504 (1999)

    Article  CAS  Google Scholar 

  81. Dolci, L.S., Huszthy, P., Samu, E., Montalti, M., Prodi, L., Zaccheroni, N.: Photophysical characterisation metal ion binding and enantiomeric recognition of chiral ligands containing phenazine fluorophore. Collect. Czech. Chem. Commun. 69, 885–896 (2004)

    Article  CAS  Google Scholar 

  82. Kertész, J., Huszthy, P., Kormos, A., Bezúr, L.: Synthesis of silica gel-bound acridino-18-crown-6 ether and preliminary studies on its metal ion selectivity. Tetrahedron 67, 5206–5212 (2011)

    Article  Google Scholar 

  83. Kertész, J., Bognár, B., Kormos, A., Móczár, I., Baranyai, P., Kubinyi, M., Kálai, T., Hideg, K., Huszthy, P.: Synthesis and metal ion complexation of spin labeled 18-crown-6 ethers containing an acridone or an acridine fluorophore unit. Tetrahedron 67, 8860–8864 (2011)

    Article  Google Scholar 

  84. Huszthy, P., Vermes, B., Báthori, N., Czugler, M.: Synthesis and X-ray crystallographic studies of novel proton-ionizable nitro- and halogen-substituted acridono-18-crown-6 chromo- and fluorogenic ionophores. Tetrahedron 59, 9371–9377 (2003)

    Article  CAS  Google Scholar 

  85. Kádár, M., Biró, A., Tóth, K., Vermes, B., Huszthy, P.: Spectrophotometric determination of the dissociation constants of crown ethers with grafted acridone unit in methanol based on Benesi-Hildebrand evaluation. Spectrochim. Acta A 62, 1032–1038 (2005)

    Article  Google Scholar 

  86. Bazzicalupi, C., Bencini, A., Matera, I., Puccioni, S., Valtancoli, B.: Selective binding and fluorescence sensing of Zn(II) with acridine-based macrocycles. Inorg. Chim. Acta 381, 162–169 (2012)

    Article  CAS  Google Scholar 

  87. Bartoli, S., Bazzicalupi, C., Biagini, S., Borsari, L., Bencini, A., Faggi, E., Giorgi, C., Sangregorio, C., Valtancoli, B.: Cu(II) complexation with an acridine-containing macrocycle. Assembly of water cluster chains within the cavity of tetranuclear metallomacrocycles. Dalton Trans. 7, 1223–1230 (2009)

  88. Puccioni, S., Bazzicalupi, C., Bencini, A., Giorgi, C., Valtancoli, B., De Filippo, G., Lippolis, V., Salvi, P.R., Pietraperzia, G., Chelli, R., Gellini, C.: Tuning the emission properties of fluorescent ligands by changing pH: the unusual case of an acridine-containing polyamine macrocycle. J. Phys. Chem. A 117, 3798–3808 (2013)

    Article  CAS  Google Scholar 

  89. Orda-Zgadzaj, M., Abraham, W.: Photoswitchable macrocycles incorporating acridane moieties. Synthesis 21, 3345–3356 (2007)

    Google Scholar 

  90. Teulade-Fichou, M.-P., Vigneron, J.-P., Lehn, J.-M.: Detection of organic anions in water through complexation enhanced fluorescence of a macrobicyclic tris-acridine cryptand. J. Chem. Soc. Perkin Trans. 2, 2169–2175 (1996)

    Article  Google Scholar 

  91. Rajakumar, P., Raja, S.: Synthesis of dicationic acridinophane: optical and electrochemical studies. Synthesis 3, 465–469 (2010)

    Article  Google Scholar 

  92. Zhang, D., Jiang, X., Yang, H., Martinez, A., Feng, M., Dong, Z., Gao, G.: Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4 via adjusting the ring size and rigidity. Org. Biomol. Chem. 11, 3375–3381 (2013)

    Article  CAS  Google Scholar 

  93. Martí-Centelles, V., Burguete, M.I., Galindo, F., Izquierdo, M.A., Kumar, D.K., White, A.J.P., Luis, S.V., Vilar, R.: Fluorescent acridine-based receptors for H2PO4 . J. Org. Chem. 77, 490–500 (2012)

    Article  Google Scholar 

  94. Zieba, R., Desroches, C., Chaput, F., Sigala, C., Jeanneau, E., Parola, S.: The first approach to a new family of macrocycles: synthesis and characterization of thiacalix[2]thianthrenes. Tetrahedron Lett. 48, 5401–5405 (2007)

    Article  CAS  Google Scholar 

  95. Zieba, R., Desroches, C., Jeanneau, E., Parola, S.: Insights into the reactivity of thiacalix[2]thianthrenes: synthesis and structural studies of sulfoxide and sulfone derivatives. Tetrahedron 63, 10809–10816 (2007)

    Article  CAS  Google Scholar 

  96. Thabet, W., Baklouti, L., Zieba, R., Parola, S.: Cation binding by thiacalixthianthrenes. J. Incl. Phenom. Macrocycl. Chem. 73, 135–139 (2012)

    Article  CAS  Google Scholar 

  97. Amthor, S., Lambert, C., Graser, B., Leusser, D., Selinka, C., Stalke, D.: Synthesis and ligand properties of thianthrenophane. Org. Biomol. Chem. 2, 2897–2901 (2004)

    Article  CAS  Google Scholar 

  98. Wagner, G., Fiegel, M.: Parallel ß-sheet conformation in macrocycles. Tetrahedron 49, 10831–10842 (1993)

    Article  CAS  Google Scholar 

  99. Fenniri, H., Hosseini, M.W., Lehn, J.-M.: Molecular recognition of NADP(H) and ATP by macrocyclic polyamines bearing acridine groups. Helv. Chim. Acta 80, 786–803 (1997)

    Article  CAS  Google Scholar 

  100. Rossiter, C.S., Mathews, R.A., Morrow, J.R.: Cleavage of an RNA analog by Zn(II) macrocyclic catalysts appended with a methyl or an acridine group. J. Inorg. Biochem. 101, 925–934 (2007)

    Article  CAS  Google Scholar 

  101. Moreno-Corral, R., Lara, K.O.: Complexation studies of nucleotides by tetrandrine derivatives bearing anthraquinone and acridine groups. Supramol. Chem. 20, 427–435 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this work by CNCS-UEFISCDI (Project PN-II-ID-JRP-RO-FR-2012-0088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena Bogdan or Ion Grosu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rednic, M.I., Hădade, N.D., Bogdan, E. et al. Macrocycles embedding phenothiazine or similar nitrogen and/or sulphur containing heterocycles. J Incl Phenom Macrocycl Chem 81, 263–293 (2015). https://doi.org/10.1007/s10847-014-0455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0455-x

Keywords

Navigation