Skip to main content
Log in

Surface-confined amantadine–β-cyclodextrin inclusion complex: voltammetric study and application

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A carbon paste electrode was modified with β-cyclodextrin (β-CD/CPE) and used in the competitive voltammetric determination of antiviral drug, amantadine. Ferrocene (FC) was used as the electrochemical probe which competed with amantadine for β-CD cavity. Study of the complexation of FC and amantadine with β-cyclodextrin was followed by cyclic voltammetry. Inclusion of FC in β-CD cavity at the surface of the modified electrode showed the adsorptive nature of current flow \( \left( {\Delta E_{\text{p}} \sim 0\;{\text{V}}} \right) \). The formation constant of FC–β-CD complex was calculated from voltammetric data to be 2.03 × 10M−1. In the presence of amantadine, the adsorptive current of FC decreased. The stability constant of amantadine–β-CD complex was calculated to be 9.40 × 10M−1. A linear relationship between current decrease and amantadine concentration was observed in the range of 0.1–1.0 mM using differential pulse voltammetry. The limit of detection was 0.08 mM with a sensitivity of 1.34 μA/mM. The modified electrode was used successfully in the determination of amantadine in tablets (recovery % = 96 ± 1 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prud’homme, I.T., Zoueva, O., Weber, J.M.: Amantadine susceptibility in influenza A virus isolates: determination methods and lack of resistance in a Canadian sample. Clin. Diagn. Virol. 8, 41–51 (1997)

    Article  Google Scholar 

  2. Paci, C., Thomas, A., Onofrj, M.: Amantadine for dyskinesia in patients affected by severe Parkinson’s disease. Neurol. Sci. 22, 75–76 (2001)

    Article  CAS  Google Scholar 

  3. Smith, J.P., Riley, T.R., Bingaman, S., Mauger, D.T.: Amantadine therapy for chronic hepatitis C: a dose escalation study. Am. J. Gastroenterol. 99, 1099–1104 (2004)

    Article  CAS  Google Scholar 

  4. Krupp, L.B.: Fatigue in multiple sclerosis: definition, pathophysiology and treatment. CNS Drugs 17, 225–234 (2003)

    Article  CAS  Google Scholar 

  5. Martindale: The Complete Drug Reference, 33rd edn., pp. 1161–1162. Pharmaceutical, London (2002)

  6. Cui, S., Feng, F., Liu, H., Ma, M.: New method for high-performance liquid chromatographic determination of amantadine and its analogues in rat plasma. J. Pharmaceut. Biomed. 44, 1100–1105 (2007)

    Article  CAS  Google Scholar 

  7. van der Horst, F.A.L., Teeuwsen, J., Holthuis, J.J.M., Brinkman, U.A.T.: High-performance liquid chromatographic determination of amantadine in urine after micelle-mediated pre-column derivatization with 1-fluoro-2,4-dinitrobenzene. J. Pharmaceut. Biomed. 8, 799–804 (1990)

    Article  Google Scholar 

  8. Wang, P., Liang, Y.Z., Chen, B.M., Zhou, N., Yi, L.Z., Yu, Y., Yi, Z.B.: Quantitative determination of amantadine in human plasma by liquid chromatography-mass spectrometry and the application in a bioequivalence study. J. Pharmaceut. Biomed. 43, 1519–1525 (2007)

    Article  CAS  Google Scholar 

  9. Duh, T.H., Wu, H.L., Pan, C.W., Kou, H.S.: Fluorimetric liquid chromatographic analysis of amantadine in urine and pharmaceutical formulation. J. Chromatogr. A 23, 1–2 (2005)

    Google Scholar 

  10. Leis, H.J., Fauler, G., Windischhofer, W.: Quantitative analysis of memantine in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry. J. Mass Spectrum. 37, 477–480 (2002)

    Article  CAS  Google Scholar 

  11. Yeh, H.H., Yang, Y.H., Chen, S.H.: Simultaneous determination of memantine and amantadine in human plasma as fluorescein derivatives by micellar electrokinetic chromatography with laser-induced fluorescence detection and its clinical application. Electrophoresis 31, 1903–1911 (2010)

    Article  CAS  Google Scholar 

  12. Mahmoud, A.M., Khalil, N.Y., Darwish, I.A., Aboul-Fadl, Y.: Selective spectrophotometric and spectrofluorometric methods for the determination of amantadine hydrochloride in capsules and plasma via derivatization with 1,2-naphthoquinone-4-sulphonate. Int. J. Anal. Chem. (2009). doi:10.1155/2009/810104

    Google Scholar 

  13. Omara, H.A., Amin, A.S.: Spectrophotometric micro determination of anti-Parkinsonian and antiviral drug amantadine HCl in pure and in dosage forms. Arabian J. Chem. 4, 287–292 (2011)

    Article  CAS  Google Scholar 

  14. Askal, H.F., Khedr, A.S., Darwish, I.A., Mahmoud, R.M.: Quantitative thin-layer chromatographic method for determination of amantadine hydrochloride. Int. J. Biomed. Sci. 4, 155–160 (2008)

    CAS  Google Scholar 

  15. Rizk, M.S., Toubar, S.S., Sultan, M.A., Assaad, S.H.: Ultraviolet spectrophotometric determination of primary amine-containing drugs via their charge-transfer complexes with tetracyanoethylene. Microchim. Acta 143, 281–285 (2003)

    Article  CAS  Google Scholar 

  16. Darwish, I.A., Khedr, A.S., Askal, H.F., Mahmoud, R.M.: Simple and sensitive spectrophotometric methods for determination of amantadine hydrochloride. J. Appl. Spectrosc. 73, 792–797 (2006)

    Article  CAS  Google Scholar 

  17. Jalali, F., Maghooli, R.: Potentiometric determination of trace amounts of amantadine using a modified carbon-paste electrode. Anal. Sci. 25, 1227–1230 (2009)

    Article  CAS  Google Scholar 

  18. Abdel-Ghani, N.T., Shoukry, A.F., Hussein, S.H.: Flow injection potentiometric determination of amantadine HCl. J. Pharmaceut. Biomed. 30, 601–611 (2002)

    Article  CAS  Google Scholar 

  19. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  20. Gaichore, R.R., Srivastava, A.K.: Voltammetric determination of nifedipine using a β-cyclodextrin modified multi-walled carbon nanotube paste electrode. Sens. Actuat. B-Chem. 188, 1328–1337 (2013)

    Article  CAS  Google Scholar 

  21. Wang, L., Lei, J., Ma, R., Ju, H.: Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal. Chem. 85, 6505–6510 (2013)

    Article  CAS  Google Scholar 

  22. Song, J.-P., Guo, Y.-J., Shuang, S.-M., Dong, C.: Study on the inclusion interaction of ethyl violet with cyclodextrins by MWNTs/Nafion modified glassy carbon electrode. J. Incl. Phenom. Macrocycl. Chem. 68, 467–473 (2010)

    Article  CAS  Google Scholar 

  23. Yang, Y., Yang, X., Yang, H.F., Liu, Z.M., Liu, Y.L., Shen, G.L., Yu, R.Q.: Electrochemical sensor for cinchonine based on a competitive host-guest complexation. Anal. Chim. Acta 528, 135–142 (2005)

    Article  CAS  Google Scholar 

  24. Choi, S.J., Choi, B.G., Park, S.M.: Electrochemical sensor for electrochemically inactive β-d(+)-glucose using α-cyclodextrin template molecules. Anal. Chem. 74, 1998–2002 (2002)

    Article  CAS  Google Scholar 

  25. Ferancová, A., Labuda, J.: Cyclodextrins as electrode modifiers. Fresenius J. Anal. Chem. 370, 1–10 (2001)

    Article  Google Scholar 

  26. Gelb, R.I., Schwartz, L.M., Laufer, D.A.: Adamantan-I-ylamine and adamantan-I-ylamine hydrochloride complexes with cycloamyloses. J. Chem Soc. Perkin Trans. 2, 15–21 (1984)

    Article  Google Scholar 

  27. Matsue, T., Evans, D.H., Osa, T., Kobayashi, N.: Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of beta-cyclodextrin. J. Am. Chem. Soc. 107, 3411–3417 (1985)

    Article  CAS  Google Scholar 

  28. Siegel, B., Breslow, R.: Lyophobic binding of substrates by cyclodextrins in nonaqueous solvents. J. Am. Chem. Soc. 97, 6869–6870 (1975)

    Article  CAS  Google Scholar 

  29. Ferancová, A., Korgová, E., Mikó, R., Labuda, J.: Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J. Electroanal. Chem. 492, 74–77 (2000)

    Article  Google Scholar 

  30. Gomez, M.E., Kaifer, A.: Voltammetric behavior of a ferrocene derivative. A comparison using surface-confined and diffusion-controlled species. J. Chem. Edu. 69, 502–505 (1992)

  31. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  32. Strelets, V.V., Mamedjarova, I.A., Nefedova, M.N., Pysnograeva, N.I., Sokolov, V.I., PospiSil, L., Hanzllk, J.: Electrochemistry of inclusion complexes of organometallics complexation of ferrocene and azaferrocene by cyclodextrin. J. Electroanal. Chem. 310, 179–186 (1991)

    Article  CAS  Google Scholar 

  33. Bard, A.J., Faulkner, L.R.: Electrochemical Methods Fundamentals and Applications, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  34. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  35. Maeda, Y., Fukuda, T., Yamamoto, H., Kitano, H.: Regio- and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 13, 4187–4189 (1997)

    Article  CAS  Google Scholar 

  36. Rojas, M.T., Koeniger, R., Stoddart, J.F., Kaifer, A.E.: Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated beta-cyclodextrin derivative. J. Am. Chem. Soc. 117(1), 336–343 (1995)

    Article  CAS  Google Scholar 

  37. Spector, R.: Transport of amantadine and rimantadine through the blood–brain barrier. J. Pharmacol. Exp. Ther. 244, 516–519 (1988)

    CAS  Google Scholar 

  38. Miller, J.N., Miller, J.C.: Statistics and Chemometrics for Analytical Chemistry, 5th edn. Pearson Education, Harlow (2005)

    Google Scholar 

  39. Arndt, T., Guessregen, B., Hohl, A., Reis, J.: Determination of serum amantadine by liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta 359, 125–131 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support from the research council of Razi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali, F., Riahi, S. Surface-confined amantadine–β-cyclodextrin inclusion complex: voltammetric study and application. J Incl Phenom Macrocycl Chem 81, 153–160 (2015). https://doi.org/10.1007/s10847-014-0444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-014-0444-0

Keywords

Navigation