Skip to main content
Log in

Studies on α-, β-, and γ-cyclodextrin inclusion complexes of isoquinoline alkaloids berberine, palmatine and coralyne

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The complexation of three isoquinoline alkaloids berberine, palmatine and coralyne with α-, β-, and γ-CDs were studied by absorption, fluorescence, circular dichroism, NMR spectroscopy and microcalorimetric assay techniques. Their binding constant (K BH) values were determined by Benesi–Hildebrand equation. All the alkaloids formed 1:1 stoichiometry complexes with the cyclodextrins (CDs). The binding affinity is largest in β-CD followed by γ-, and α-CD for coralyne, followed by berberine and then palmatine. The thermodynamic parameters of the complexation were determined by calorimetry. The stoichiometry of complex formation and the variation of the apparent binding constant from spectroscopic studies were confirmed by calorimetry. The formation of the inclusion complexes was entropy driven in almost all the systems. Coralyne formed the strongest complex with all the CDs, followed by berberine and palmatine in that order. Coralyne-β-CD complex was studied through NMR, indicating more than one interaction mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001)

    Article  CAS  Google Scholar 

  2. Dahan, A., Hoffman, A.: Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J. Control Release 129, 1–10 (2008)

    Article  CAS  Google Scholar 

  3. Van De Waterbeemd, H., Smith, D.A., Beaumont, K., Walker, D.K.: Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313–1333 (2001)

    Article  Google Scholar 

  4. Buck, D.P., Abeysinghe, P.M., Cullinane, C., Day, A.I., Grant Collins, J., Harding, M.M.: Inclusion complexes of the antitumour metallocenes Cp2MCl2 (M = Mo, Ti) with cucurbit[n]urils. Dalton Trans. 17, 2328–2334 (2008)

    Article  Google Scholar 

  5. Suvitha, A., Venkataramanan, N.S., Mizuseki, H., Kawazoe, Y., Ohuchi, N.: Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8. J. Inclusion Phenom. Macrocycl. Chem. 66, 213–218 (2010)

    Article  CAS  Google Scholar 

  6. Fan, Z.-F., Wang, J., Huang, Y., Xue, S.-F., Xiao, X., Zhang, Y.-Q., Zhu, Q.-J., Tao, Z.: Host–guest complexes of various cucurbit[n]urils with the hydrochloride salt of 2,4-diaminoazobenzene. J. Inclusion Phenom. Macrocycl. Chem. 72, 213–220 (2012)

    Article  CAS  Google Scholar 

  7. Ma, D., Hettiarachchi, G., Nguyen, D., Zhang, B., Wittenberg, J.B., Zavalij, P.Y., Briken, V., Isaacs, L.: Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem. 4, 503–510 (2012)

    Article  CAS  Google Scholar 

  8. Svec, J., Sindelar, V., Kaifer, A.E.: Effects of cucurbituril size on the binding of a lutidine guest. New J. Chem. 36, 1721–1724 (2012)

    Article  CAS  Google Scholar 

  9. Stancu, A.D., Buschmann, H.-J., Mutihac, L.: Survey on thermodynamic properties for the complexation behaviour of some calixarene and cucurbituril receptors. J. Inclusion Phenom. Macrocycl. Chem. 75, 1–10 (2013)

    Google Scholar 

  10. Yang, R., Chen, J.-B., Dai, X.-Y., Huang, R., Xiao, C.-F., Gao, Z.-Y., Yang, B., Yang, L.-J., Yan, S.-J., Zhang, H.-B., Qing, C., Lin, J.: Inclusion complex of GA-13315 with cyclodextrins: preparation, characterization, inclusion mode and properties. Carbohydr. Polym. 89, 89–97 (2012)

    Article  CAS  Google Scholar 

  11. Dandawate, P.R., Vyas, A., Ahmad, A., Banerjee, S., Deshpande, J., Swamy, K.V., Jamadar, A., Dumhe-Klaire, A.C., Padhye, S., Sarkar, F.H.: Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm. Res. 29, 1775–1786 (2012)

    Article  CAS  Google Scholar 

  12. Kostadinova, E., Kaloyanova, S., Stoyanov, S., Petkov, I.: Spectroscopic elucidation of the interaction of native cyclodextrins and their acetylated derivatives with asymmetric monomethyne cyanine dye. J. Inclusion Phenom. Macrocycl. Chem. 72, 63–69 (2012)

    Article  CAS  Google Scholar 

  13. Liu, B., Li, W., Nguyen, T.A., Zhao, J.: Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins. Food Chem. 134, 926–932 (2012)

    Article  CAS  Google Scholar 

  14. Yuan, C., Jin, Z., Xu, X.: Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym. 89, 492–496 (2012)

    Article  CAS  Google Scholar 

  15. Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M.: An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 136, 186–192 (2013)

    Article  CAS  Google Scholar 

  16. Takacs, Z., Brotin, T., Dutasta, J.-P., Lang, J., Todde, G., Kowalewski, J.: Inclusion of chloromethane guests affects conformation and internal dynamics of cryptophane-D host. J. Phys. Chem. B 116, 7898–7913 (2012)

    Article  CAS  Google Scholar 

  17. Shi, Y., Li, X., Yang, J., Gao, F., Tao, C.: Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy. J. Fluoresc. 21, 531–538 (2011)

    Article  CAS  Google Scholar 

  18. Zhang, C., Shen, W., Fan, R., Zhang, G., Shuang, S., Dong, C., Choi, M.M.F.: Spectral study on the inclusion complex of cryptophane-E and CHCl3. Spectrochim. Acta Part A 75, 157–161 (2010)

    Article  Google Scholar 

  19. Taratula, O., Hill, P.A., Khan, N.S., Carrol, P.J., Dmochowski, I.J.: Crystallographic observation of ‘induced fit’ in a cryptophane host–guest model system. Nat. Commun. 1, 148 (2010)

    Article  Google Scholar 

  20. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  21. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  22. Liu, L., Guo, Q.-X.: The driving forces in the inclusion complexation of cyclodextrins. J. Inclusion Phenom. Macrocycl. Chem. 42, 1–14 (2002)

    Article  CAS  Google Scholar 

  23. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998)

    Article  CAS  Google Scholar 

  24. Eli, W., Chen, W., Xue, Q.: The association of triton-X surfactants with β-cyclodextrin: an isothermal titration calorimetry study. J. Inclusion Phenom. Macrocycl. Chem. 36, 439–445 (2000)

    Article  CAS  Google Scholar 

  25. Yu, J.-S., Wei, F.-D., Gao, W., Zhao, C.-C.: Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine. Spectrochim. Acta Part A 58, 249–256 (2002)

    Article  Google Scholar 

  26. Qiu, X.-M., Sun, D.-Z., Wei, X.-L., Yin, B.-L.: Thermodynamic study of the inclusion interaction between gemini surfactants and cyclodextrins by isothermal titration microcalorimetry. J. Solut. Chem. 36, 303–312 (2007)

    Article  CAS  Google Scholar 

  27. Othman, M., Bouchemal, K., Couvreur, P., Desmaële, D., Morvan, E., Pouget, T., Gref, R.: A comprehensive study of the spontaneous formation of nanoassemblies in water by a ‘lock-and-key’ interaction between two associative polymers. J. Colloid Interface Sci. 354, 517–527 (2011)

    Article  CAS  Google Scholar 

  28. Lin, C.-C., Lin, S.-Y., Chung, J.-G., Lin, J.-P., Chen, G.-W., Kao, S.-T.: Down-regulation of cyclin B1 and up-regulation of Wee1 by berberine promotes entry of leukemia cells into the G2/M-phase of the cell cycle. Anticancer Res. 26, 1097–1104 (2006)

    CAS  Google Scholar 

  29. Sun, Y., Xun, K., Wang, Y., Chen, X.: A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 20, 757–769 (2009)

    Article  CAS  Google Scholar 

  30. Satyavathi, G.V., Gupta, A.K., Tandon, N.: Medicinal Plants of India. Indian Council of Medical Research, New Delhi (1987)

    Google Scholar 

  31. Letasiova, S., Jantova, S., Cipak, L., Muckova, M.: Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett. 239, 254–262 (2006)

    Article  CAS  Google Scholar 

  32. Mantena, S.K., Sharma, S.D., Katiyar, S.K.: Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 27, 2018–2027 (2006)

    Article  CAS  Google Scholar 

  33. Kuo, C.L., Chi, C.W., Liu, T.Y.: The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett. 203, 127–137 (2004)

    Article  CAS  Google Scholar 

  34. Hwang, J.M., Kuo, H.C., Tseng, T.H., Liu, J.Y., Chu, C.Y.: Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch. Toxicol. 80, 62–73 (2006)

    Article  CAS  Google Scholar 

  35. Eom, K.S., Hong, J.M., Youn, M.J., So, H.S., Park, R., Kim, J.M., Kim, T.Y.: Berberine induces G1 arrest and apoptosis in human glioblastoma T98G cells through mitochondrial/caspases pathway. Biol. Pharm. Bull. 31, 558–562 (2008)

    Article  CAS  Google Scholar 

  36. Peng, P.L., Hsieh, Y.S., Wang, C.J., Hsu, J.L., Chou, F.P.: Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol. Appl. Pharmacol. 214, 8–15 (2006)

    Article  CAS  Google Scholar 

  37. Mantena, S.K., Sharma, S.D., Katiyar, S.K.: Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol. Cancer Ther. 5, 296–308 (2006)

    Article  CAS  Google Scholar 

  38. Lin, J.P., Yang, J.S., Lee, J.H., Hsieh, W.T., Chung, J.G.: Berberine induces cell cycle arrest and apoptosis in human gastric carcinoma SNU-5 cell line. World J. Gastroenterol. 12, 21–28 (2006)

    CAS  Google Scholar 

  39. Katiyar, S.K., Meeran, S.M., Katiyar, N., Akhtar, S.: p53 cooperates berberine-induced growth inhibition and apoptosis of non-small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol. Carcinog. 48, 24–37 (2009)

    Article  CAS  Google Scholar 

  40. Kluza, J., Baldeyrou, B., Colson, P., Rasoanaivo, P., Mambu, L., Frappier, F., Bailly, C.: Cytotoxicity and DNA binding properties of the plant alkaloid burasaine. Eur. J. Pharm. Sci. 20, 383–391 (2003)

    Article  CAS  Google Scholar 

  41. Chang, Y.L., Usami, S., Hsieh, M.T., Jiang, M.J.: Effects of palmatine on isometric force and intracellular calcium levels of arterial smooth muscle. Life Sci. 64, 597–606 (1999)

    Article  CAS  Google Scholar 

  42. Bhadra, K., Suresh Kumar, G.: Therapeutic potential of nucleic acid binding isoquinoline alkaloids: binding aspects and implications for drug design. Med. Res. Rev. 31, 821–862 (2011)

    Article  CAS  Google Scholar 

  43. Maiti, M., Suresh Kumar, G.: Protoberberine alkaloids: physicochemical and nucleic acid binding properties. Top. Heterocycl. Chem. 10, 155–209 (2007)

    CAS  Google Scholar 

  44. Bhadra, K., Maiti, M., Suresh Kumar, G.: DNA-Binding cytotoxic alkaloids: comparative study of the energetics of binding of berberine, palmatine, and coralyne. DNA Cell Biol. 27, 675–685 (2008)

    Article  CAS  Google Scholar 

  45. Bhadra, K., Suresh Kumar, G.: Interaction of berberine, palmatine, coralyne, and sanguinarine to quadruplex DNA: a comparative spectroscopic and calorimetric study. Biochim. Biophys. Acta 1810, 485–496 (2011)

    Article  CAS  Google Scholar 

  46. Islam, M.M., Sinha, R., Suresh Kumar, G.: RNA binding small molecules: studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys. Chem. 125, 508–520 (2007)

    Article  CAS  Google Scholar 

  47. Islam, M.M., Roy Chowdhury, S., Suresh Kumar, G.: Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J. Phys. Chem. B 113, 1210–1224 (2009)

    Article  CAS  Google Scholar 

  48. Sinha, R., Suresh Kumar, G.: Interaction of isoquinoline alkaloids with an RNA triplex: structural and thermodynamic studies of berberine, palmatine, and coralyne binding to poly(U).poly(A)*poly(U). J. Phys. Chem. B 113, 13410–13420 (2009)

    Article  CAS  Google Scholar 

  49. Giri, P., Suresh Kumar, G.: Molecular recognition of poly(A) targeting by protoberberine alkaloids: in vitro biophysical studies and biological perspectives. Mol. BioSyst. 6, 81–88 (2010)

    Article  CAS  Google Scholar 

  50. Giri, P., Suresh Kumar, G.: Isoquinoline alkaloids and their binding with polyadenylic acid: potential basis of therapeutic action. Mini-Rev. Med. Chem. 10, 568–577 (2010)

    Article  CAS  Google Scholar 

  51. Hu, Y.-J., Liu, Y., Xiao, X.-H.: Investigation of the interaction between berberine and human serum albumin. Biomacromolecules 10, 517–521 (2009)

    Article  CAS  Google Scholar 

  52. Hu, Y.-J., Yu, O.-Y., Dai, C.-M., Liu, Y., Xiao, X.-H.: Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11, 106–112 (2010)

    Article  CAS  Google Scholar 

  53. Khan, A.Y., Hossain, M., Suresh Kumar, G.: Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins. Chemosphere 87, 775–781 (2012)

    Article  CAS  Google Scholar 

  54. Khan, A.Y., Hossain, M., Suresh Kumar, G.: Binding of plant alkaloids berberine and palmatine to serum albumins: a thermodynamic investigation. Mol. Biol. Rep. 40, 553–566 (2013)

    Article  CAS  Google Scholar 

  55. Hazra, S., Hossain, M., Suresh Kumar, G.: Binding of isoquinoline alkaloids berberine, palmatine and coralyne to hemoglobin: structural and thermodynamic characterization studies. Mol. BioSyst. 9, 143–153 (2013)

    Article  CAS  Google Scholar 

  56. Pilch, D.S., Yu, C., Makhey, D., LaVoie, E.J., Srinivasan, A.R., Olson, W.K., Sauers, R.R., Breslauer, K.J., Geacintov, N.E., Liu, L.F.: Minor groove-directed and intercalative ligand-DNA interactions in the poisoning of human DNA topoisomerase I by protoberberine analogs. Biochemistry 36, 12542–12553 (1997)

    Article  CAS  Google Scholar 

  57. Li, T.-K., Bathory, E., LaVoie, E.J., Srinivasan, A.R., Olson, W.K., Sauers, R.R., Liu, L.F., Pilch, D.S.: Human topoisomerase I poisoning by protoberberines: potential roles for both drug-DNA and drug-enzyme interactions. Biochemistry 39, 7107–7116 (2000)

    Article  CAS  Google Scholar 

  58. Megyesi, M., Biczók, L.: Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes. Chem. Phys. Lett. 424, 71–76 (2006)

    Article  CAS  Google Scholar 

  59. Miskolczy, Z., Biczók, L.: Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe. Chem. Phys. Lett. 477, 80–84 (2009)

    Article  CAS  Google Scholar 

  60. Megyesi, M., Biczók, L., Jablonkai, I.: Highly sensitive fluorescence response to inclusion complex formation of berberine alkaloid with cucurbit[7]uril. J. Phys. Chem. C 112, 3410–3416 (2008)

    Article  CAS  Google Scholar 

  61. Freyer, M.W., Lewis, E.A.: Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. 84, 79–113 (2008)

    Article  CAS  Google Scholar 

  62. Chaires, J.B.: Calorimetry and thermodynamics in drug design. Annu. Rev. Biophys. 37, 135–151 (2008)

    Article  CAS  Google Scholar 

  63. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  64. Connors, K.A.: Binding Constants: the measurement of molecular complex stability, pp. 28–261. John Wiley & Sons, Inc., New York, USA (1987)

    Google Scholar 

  65. Del Martin Valle, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1047 (2004)

    Article  Google Scholar 

  66. Suresh Kumar, G.: RNA targeting by small molecules: binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J. Biosci. 37, 539–552 (2012)

    Article  Google Scholar 

  67. Harata, K., Uedaira, H.: The circular dichroism spectra of the β-cyclodextrin complex with naphthalene derivatives. Bull. Chem. Soc. Jpn. 48, 375–378 (1975)

    Article  CAS  Google Scholar 

  68. Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., Simone, A.D.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)

    Article  CAS  Google Scholar 

  69. Demarco, P.V., Thakkar, A.L.: Cyclohepta-amylose inclusion complexes: a proton magnetic resonance study. J. Chem. Soc. Chem. Commun. 1, 2–4 (1970)

    Google Scholar 

  70. Correia, I., Bezzenine, N., Ronzani, N., Platzer, N., Beloeil, J.-C., Doan, B.-T.: Study of inclusion complexes of acridine with β-, and (2,6-di-O-methyl)-β-cyclodextrin by use of solubility diagrams and NMR spectroscopy. J. Phys. Org. Chem. 15, 647–659 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the network Project GENCODE of the Council of Scientific and Industrial Research (CSIR), Govt. of India. Soumitra Hazra is a Junior Research Fellow of the CSIR awarded through the national eligibility test. Dr. Maidul Hossain was a Research Associate of the CSIR during the period of this work. The technical assistance of Mr. E. Padmanabhan with the NMR spectral measurements is gratefully acknowledged. The authors thank all the colleagues of the Biophysical Chemistry Laboratory for help and cooperation throughout the course of this work. Critical comments and the extensive helpful suggestions from the anonymous reviewers that enabled us to improve the quality of the manuscript considerably are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinatha Suresh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2013_301_MOESM1_ESM.tif

ESI Fig. S1 Changes in the absorption spectra of berberine (10 μM) (A and B), palmatine (10 μM) (C and D) and coralyne (1.0 μM) (E and F) with β-, and γ-CDs, respectively. In figure A (curves 1–5), C (curves 1–5) and E (curves 1–7) β-CD concentration varied from 0–100, 0–50 and 0–8 μM, respectively. In figure B (curves 1–4), D (curves 1–4) and F (curves 1–7) γ-CD concentration varied from 0–80, 0–40 and 0–8 μM, respectively. (TIFF 719 kb)

10847_2013_301_MOESM2_ESM.tif

ESI Fig. S2 Fluorescence spectral changes of berberine (10 μM) (A and B), palmatine (10 μM) (C and D) and coralyne (0.01 μM) (E and F) with α-, and γ-CDs, respectively. In figure A (curves 1–17), C (curves 1–9) and E (curves 1–9) β-CD concentration varied from 0–500, 0–240 and 0–30 μM, respectively. In figure B (curves 1–9), D (curves 1–8) and F (curves 1–9) γ-CD concentration vaired from 0–480, 0–40 and 0–35 μM, respectively. (TIFF 1098 kb)

10847_2013_301_MOESM3_ESM.tif

ESI Fig. S3 Job plots for the binding of (A) berberine, (B) palmatine and (C) coralyne to α- (circle), β- (square), γ- (triangle) CDs. The maximum concentration of berberine, palmatine and coralyne were 4.2, 3.9 and 2.0 μM, respectively. (TIFF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, S., Hossain, M. & Kumar, G.S. Studies on α-, β-, and γ-cyclodextrin inclusion complexes of isoquinoline alkaloids berberine, palmatine and coralyne. J Incl Phenom Macrocycl Chem 78, 311–323 (2014). https://doi.org/10.1007/s10847-013-0301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0301-6

Keywords

Navigation