Skip to main content
Log in

Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials

  • Review Paper
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In 2008, we reported a new class of macrocyclic hosts and named “Pillar[5]arenes”. They combine the advantages and aspects of traditional hosts and have a composition similar to those of typical calix[n]arenes. Pillar[5]arenes have repeating units connected by methylene bridges at the para-position, and thus they have a unique symmetrical pillar architecture differing from the basket-shaped structure of meta-bridged calix[n]arenes. Pillar[5]arenes show high functionality similar to cyclodextrins, and can capture electron accepting guest molecules within their cavity similarly to cucurbit[n]urils. In this review, the synthesis, structure, rotation, host–guest properties, planar chirality and functionality of pillar[5]arenes are discussed, along with pillar[5]arene-based supramolecular architectures and the challenges in synthesizing pillar[6]arenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nepogodiev, S.A., Stoddart, J.F.: Cyclodextrin-based catenanes and rotaxanes. Chem. Rev. 98, 1959–1976 (1998). doi:10.1021/cr970049w

    Article  CAS  Google Scholar 

  2. Sauvage, J.P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998). doi:10.1021/10.1021/ar960263r

    Article  CAS  Google Scholar 

  3. Fujita, M.: Self-assembly of [2]catenanes containing metals in their backbones. Acc. Chem. Res. 32, 53–61 (1999). doi:10.1021/ar9701068

    Article  CAS  Google Scholar 

  4. Wenz, G., Han, B.H., Müller, A.: Cyclodextrin rotaxanes and polyrotaxanes. Chem. Rev. 106, 782–817 (2006). doi:10.1021/cr970027+

    Article  CAS  Google Scholar 

  5. Harada, A.: Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001). doi:10.1021/ar000174l

    Article  CAS  Google Scholar 

  6. Stoddart, J.F.: Molecular machines. Acc. Chem. Res. 34, 410–411 (2001). doi:10.1021/ar010084w

    Article  CAS  Google Scholar 

  7. Collin, J.P., Buchecker, C.D., Gaviña, P., Molero, M.C.J., Sauvage, J.P.: Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001). doi:10.1021/ar0001766

    Article  CAS  Google Scholar 

  8. Niu, Z., Gibson, H.W.: Polycatenanes. Chem. Rev. 109, 6024–6046 (2009). doi:10.1021/cr900002h

    Article  CAS  Google Scholar 

  9. Cantrill, S.J., Chichak, K.S., Peters, A.J., Stoddart, J.F.: Nanoscale borromean rings. Acc. Chem. Res. 38, 1–9 (2005). doi:10.1021/ar040226x

    Article  CAS  Google Scholar 

  10. Harada, A., Hashidzume, M., Yamaguchi, H., Takashima, Y.: Polymeric rotaxanes. Chem. Rev. 106, 782–817 (2009). doi:10.1021/cr970027+

    Google Scholar 

  11. Okumura, Y., Ito, K.: The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001). doi:10.1002/1521-4095(200104)13:7<485:AID-ADMA485>3.0.CO;2-T

    Article  CAS  Google Scholar 

  12. Araki, J., Ito, K.: Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter. 3, 1456–1473 (2007). doi:10.1039/B705688E

    Article  CAS  Google Scholar 

  13. Thoma, J.A., Stewart, M.L. (eds.): Starch: Chemistry and Technology. Academic Press, New York (1965)

    Google Scholar 

  14. Bender, M.L., Komiyama, M. (eds.): Bioorganic Chemistry. Academic Press, New York (1977)

    Google Scholar 

  15. Harata, K.: Structural aspects of stereodifferentiation in the solid state. Chem. Rev. 98, 1803–1827 (1998). doi:10.1021/cr9700134

    Article  CAS  Google Scholar 

  16. Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967). doi:10.1021/ja01002a035

    Article  CAS  Google Scholar 

  17. Dye, J.L.: Electrides: early examples of quantum confinement. Acc. Chem. Res. 42, 1564–1572 (2009). doi:10.1021/ar9000857

    Article  CAS  Google Scholar 

  18. Mezei, G., Zaleski, C.M., Pecoraro, V.L.: Structural and functional evolution of metallacrowns. Chem. Rev. 107, 4933–5003 (2007). doi:10.1021/cr078200h

    Article  CAS  Google Scholar 

  19. Gutsche, C.D. (ed.): Calixarenes. The Royal Society of Chemistry, Cambridge (1989)

    Google Scholar 

  20. Vicens, J., Böhmer, V. (eds.): Calixarenes: A Versatile Class of Macrocyclic Compounds. Kluwer Academic, Dordrecht, the Netherlands (1991)

    Google Scholar 

  21. Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997). doi:10.1021/cr960385x

    Article  CAS  Google Scholar 

  22. Casnati, A., Sansone, F., Ungaro, R.: Peptido- and glycocalixarenes: playing with hydrogen bonds around hydrophobic cavities. Acc. Chem. Res. 36, 246–254 (2003). doi:10.1021/ar0200798

    Article  CAS  Google Scholar 

  23. Tahara, K., Yobe, Y.: Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006). doi:10.1021/cr050556a

    Article  CAS  Google Scholar 

  24. Kaleta, J., Mazal, C.: A triangular macrocycle altering planar and bulky sections in its molecular backbone. Org. Lett. 13, 1326–1329 (2011). doi:10.1021/ol1031816

    Article  CAS  Google Scholar 

  25. Gessner, V.H., Tilley, T.D.: Diphenylanthracene macrocylces from reductive zirconocene coupling: on the edge of steric overload. Org. Lett. 13, 1154–1157 (2011). doi:10.1021/ol2000099

    Article  CAS  Google Scholar 

  26. Chen, G., Mahmud, I., Dawe, L.N., Daniels, L.M., Zhao, Y.: Synthesis and properties of conjugated oligoyne-centered π-extended tetrathiafulvalene analogues and related macromolecular systems. J. Org. Chem. 76, 2701–2715 (2011). doi:10.1021/jo2000447

    Article  CAS  Google Scholar 

  27. Tominaga, M., Masu, H., Azumaya, I.: Construction and charge-transfer complexation of adamantane-based macrocycles and a cage with aromatic ring moieties. J. Org. Chem. 74, 8754–8760 (2009). doi:10.1021/jo9018842

    Article  CAS  Google Scholar 

  28. Tominaga, M., Masu, H., Katagiri, K., Kato, T., Azumaya, I.: Triple helicate constructed by covalent bondings: crystal structure and effective synthesis based on propeller-like substructures. Org. Lett. 7, 3785–3787 (2005). doi:10.1021/ol051477o

    Article  CAS  Google Scholar 

  29. Lou, K., Prior, A.M., Desper, J., Hua, D.H.: Synthesis of cyclododeciptycene quinones. J. Am. Chem. Soc. 132, 17635–17641 (2010). doi:10.1021/ja1088309

    Article  CAS  Google Scholar 

  30. Shorthill, B.J., Avetta, C.T., Glass, T.E.: Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube. J. Am. Chem. Soc. 126, 12732–12733 (2004). doi:10.1021/ja047639d

    Article  CAS  Google Scholar 

  31. Yokoyama, A., Maruyama, T., Tagami, K., Masu, H., Katagiri, K., Azumaya, I., Yokozawa, T.: One-pot synthesis of cyclic triamides with a triangular cavity from trans-stilbene and diphenylacetylene monomers. Org. Lett. 10, 3207–3210 (2008). doi:10.1021/ol801083r

    Article  CAS  Google Scholar 

  32. Sarri, P., Venturi, F., Cuda, F., Roelens, S.: Binding of acetylcholine and tetramethylammonium to flexible cyclophane receptors: improving on binding ability by optimizing host’s geometry. J. Org. Chem. 69, 3654–3661 (2004). doi:10.1021/jo049899j

    Article  CAS  Google Scholar 

  33. Rossom, W.V., Robeyns, K., Ovaere, M., Meervelt, L.V., Dehaen, W., Maes, W.: Odd-numbered oxacalix[n]arenes (n = 5, 7): synthesis and solid-state structures. Org. Lett. 13, 126–129 (2011). doi:10.1021/ol1026969

    Article  Google Scholar 

  34. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981). doi:10.1021/ja00414a070

    Article  CAS  Google Scholar 

  35. Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000). doi:10.1021/ja993376p

    Article  CAS  Google Scholar 

  36. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2000). doi:10.1021/ar020254k

    Article  Google Scholar 

  37. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbituril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005). doi:10.1002/anie.200460675

    Article  CAS  Google Scholar 

  38. Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chem. Int. Ed. 49, 2378–2381 (2010). doi:10.1002/anie.201000420

    CAS  Google Scholar 

  39. Day, A., Arnold, A.P., Blanch, R.J., Shushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001). doi:10.1021/jo015897c

    Article  CAS  Google Scholar 

  40. Furukawa, S., Uji-i, H., Tahara, K., Ichikawa, T., Sonoda, M., De Schryver, F.C., Tobe, Y., De Feyter, S.: Molecular geometry directed kagomé and honeycomb networks: toward two-dimensional crystal engineering. J. Am. Chem. Soc. 128, 3502–3503 (2006). doi:10.1021/ja0583362

    Article  CAS  Google Scholar 

  41. Miyake, K., Yasuda, S., Harada, A., Sumaoka, J., Komiyama, M., Shigekawa, H.: Formation process of cyclodextrin necklace—analysis of hydrogen bonding on a molecular level. J. Am. Chem. Soc. 125, 5080–5085 (2003). doi:10.1021/ja026224u

    Article  CAS  Google Scholar 

  42. Shigekawa, H., Miyake, K., Sumaoka, J., Harada, A., Komiyama, M.: The molecular abacus: STM manipulation of cyclodextrin necklace. J. Am. Chem. Soc. 122, 5411–5412 (2000). doi:10.1021/ja000037j

    Article  CAS  Google Scholar 

  43. Nishimura, D., Takashima, Y., Aoki, H., Takahashi, T., Yamaguchi, H., Ito, S., Harada, A.: Single-molecular imaging of rotaxane based on glass substrates: observations of rotary movement of a rotor. Angew. Chem. Int. Ed. 47, 6077–6079 (2008). doi:10.1002/anie.200801431

    Article  CAS  Google Scholar 

  44. Ogoshi, T., Kanai, S., Fujunami, S., Yamagishi, T., Nakamoto, Y.: Para-bridged symmetrical pillar[5]arenes: their lewis acid-catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008). doi:10.10210.1021/ja711260m

    Article  CAS  Google Scholar 

  45. Ogoshi, T., Aoki, T., Kitajima, K., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Facile, rapid, and high-yield synthesis of pillar[5]arene from commercially available reagents and its X-ray crystal structure. J. Org. Chem. 76, 328–331 (2011). doi:10.1021/jo1020823

    Article  CAS  Google Scholar 

  46. Gribble, G.W., Nutaitis, C.F.: [1.1.1.1.1]Paracyclophane and [1.1.1.1.1.1]paracyclophane. Tetrahedron Lett. 26, 6023–6026 (1985). doi:10.1016/S0040-4039(00)95115-3

    Article  CAS  Google Scholar 

  47. Ogoshi, T., Kitajima, K., Umeda, K., Hiramitsu, S., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Lewis acid-catalyzed synthesis of dodecamethoxycalix[4]arene from 1,3,5-trimethoxybenzene and its conformational behavior and host–guest property. Tetrahedron 65, 10644–10649 (2009). doi:10.1016/j.tet.2009.10.059

    Article  CAS  Google Scholar 

  48. Mclldowie, M.J., Mocerino, M., Skelton, B.W., White, A.H.: Facile lewis acid catalyzed synthesis of C4 symmetric resorcinarenes. Org. Lett. 2, 3869–3871 (2000). doi:10.1021/ol006608u

    Article  Google Scholar 

  49. Iwanek, W., Urbaniak, M., Bocheńska, M.: The template synthesis and complexation properties of methoxypyrogallo[4]arene. Tetrahedron 58, 2239–2243 (2002). doi:10.1016/S0040-4020(02)00097-2

    Article  CAS  Google Scholar 

  50. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1918 (1998). doi:10.1021/cr970015o

    Article  CAS  Google Scholar 

  51. Negishi, E., Anastasia, L.: Palladium-catalyzed alkynylation. Chem. Rev. 103, 1979–2018 (2003). doi:10.1021/cr020377i

    Article  CAS  Google Scholar 

  52. Moore, J.S.: Shape-persistent molecular architectures of nanoscale dimension. Acc. Chem. Res. 30, 402–413 (1997). doi:10.1021/ar950232g

    Article  CAS  Google Scholar 

  53. Sonogashira, K., Tohda, Y., Hagiwara, N.: A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 16, 4467–4470 (1975). doi:10.1016/S0040-4039(00)91094-3

    Article  Google Scholar 

  54. Chen, Q.Y., Yang, Z.Y.: Palladium-catalyzed reaction of phenyl fluoroalkanesulfonates with alkynes and alkenes. Tetrahedron Lett. 27, 1171–1174 (1986). doi:10.1016/S0040-4039(00)84208-2

    Article  CAS  Google Scholar 

  55. Ogoshi, T., Umeda, K., Yamagishi, T., Nakamoto, Y.: Through-space π-delocalized pillar[5]arene. Chem. Commun. 4874–4876 (2009). doi:10.1039/b907894k

  56. Ogoshi, T., Masaki, K., Shiga, R., Kitajima, K., Yamagishi, T.: Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents. Org. Lett. 13, 1264–1266 (2011). doi:10.1021/ol200062j

    Article  CAS  Google Scholar 

  57. Ogoshi, T., Hashizume, M., Yamagishi, T., Nakamoto, Y.: Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chem. Commun. 46, 3708–3710 (2010). doi:10.1039/c0cc00348d

    Article  CAS  Google Scholar 

  58. Hu, X.B., Chen, L., Si, W., Yu, Y., Hou, J.L.: Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes. Chem. Commun. 47, 4694–4696 (2011). doi:10.1039/c1cc10633c

    Google Scholar 

  59. Ogoshi, T., Shiga, R., Hashizume, M., Yamagishi, T.: “Clickable” pillar[5]arenes. Chem. Commun. 47, 6927–6929 (2011). doi:10.1039/c1cc11864a

    Article  CAS  Google Scholar 

  60. Takahashi, K., Hattori, K., Toda, F.: Monotosylated α- and β-cyclodextrins prepared in an alkaline aqueous solution. Tetrahedron Lett. 25, 3331–3334 (1984). doi:10.1016/S0040-4039(01)81377-0

    Article  CAS  Google Scholar 

  61. Ikeda, H., Nagano, Y., Du, Y.-q., Ikeda, T., Toda, F.: Modifications of the secondary hydroxyl side of α-cyclodextrin and NMR studies of them. Tetrahdron Lett. 31, 5045–5048 (1990). doi:10.1016/S0040-4039(00)97802-X

    Article  CAS  Google Scholar 

  62. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007). doi:10.1021/cr050253g

    Article  CAS  Google Scholar 

  63. Pearce, A.J., Sinaÿ, P.: Diisobutylaluminum-promoted regioselective de-O-benzylation of perbenzylated cyclodextrins: a powerful new strategy for the preparation of selectively modified cyclodextrins. Angew. Chem. Int. Ed. 39, 3610–3612 (2000). doi:10.1002/1521-3773(20001016)39:20<3610:AID-ANIE3610>3.0.CO;2-V

    Article  CAS  Google Scholar 

  64. Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.K., Kim, S.Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003). doi:10.1021/ja036536c

    Article  CAS  Google Scholar 

  65. Ogoshi, T., Demachi, K., Kitajima, K., Yamagishi, T.: Monofunctionalized pillar[5]arenes: synthesis and supramolecular structure. Chem. Commun 47, 7164–7166 (2011). doi:10.1039/c1cc12333e

    Article  CAS  Google Scholar 

  66. Ogoshi, T., Kitajima, K., Fujinami, S., Yamagishi, T. Synthesis and X-ray crystal structure of difunctionalized pillar[5]arene at A1/B2 positions by in situ cyclization and deprotection. Chem. Commun. 47 (2011). doi:10.1039/c1cc13546e

  67. Ogoshi, T., Kitajima, K., Aoki, T., Fujinami, S., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of alkyl-substituted pillar[5]arenes. J. Org. Chem. 75, 3268–3273 (2010). doi:10.1021/jo100273n

    Article  CAS  Google Scholar 

  68. Han, C., Ma, F., Zibin, Z., Xia, B., Yu, Y., Huang, F.: DIBPillar[n]arenes (n = 5, 6): syntheses, X-ray crystal structures, and complexation with n-octyltriethyl ammonium hexafluorophosphate. Org. Lett. 12, 4360–4363 (2010). doi:10.1021/ol1018344

    Article  CAS  Google Scholar 

  69. Ogoshi, T., Shiga, R., Yamagishi, T., Nakamoto, Y.: Planar-chiral pillar[5]arene: chiral switches induced by multi-external stimulus of temperature, solvents, and addition of achiral guest molecule. J. Org. Chem. 76, 618–622 (2011). doi:10.1021/jo1021508

    Article  CAS  Google Scholar 

  70. Ogoshi, T., Kitajima, K., Yamagishi, T., Nakamoto, Y.: Synthesis and conformational characteristics of nonsymmetric pillar[5]arene. Org. Lett. 12, 636–638 (2010). doi:10.1021/ol902877w

    Article  CAS  Google Scholar 

  71. Kou, Y., Tao, H., Cao, D., Fu, Z., Schollmeyer, D., Meier, H.: Synthesis and conformational properties of nonsymmetric pillar[5]arenes and their acetonitrile inclusion compounds. Eur. J. Org. Chem. 48, 9721–9723 (2010). doi:10.1002/ejoc.201000718

    Google Scholar 

  72. Zibin, Z., Luo, Y., Xia, B., Han, C., Yu, Y., Chen, X., Huang, F.: Four constitutional isomers of BMpillar[5]arene: synthesis, crystal structures and complexation with n-octyltrimethyl ammonium hexafluorophosphate. Chem. Commun. 47, 2417–2419 (2011). doi:10.1039/c0cc03732j

    Article  Google Scholar 

  73. Zhang, Z., Xia, B., Han, C., Yu, Y., Huang, F.: Syntheses of copillar[5]arenes by co-oligomerization of different monomers. Org. Lett. 12, 3285–3287 (2010). doi:10.1021/ol100883k

    Article  CAS  Google Scholar 

  74. Zibin, Z., Luo, Y., Chen, J., Dong, S., Yu, Y., Ma, Z., Huang, F.: Formation of linear supramolecular polymers that is driven by C–H π interactions in solution and in the solid state. Angew. Chem. Int. Ed. 50, 1397–1401 (2011). doi:10.1002/anie.201006693

    Article  Google Scholar 

  75. Stewart, D.R., Gutsche, C.D.: Isolation, characterization, and conformational characteristics of p-tert-butylcalix[9–20]arenes. J. Am. Chem. Soc. 121, 4136–4146 (1999). doi:10.1021/ja983964n

    Article  CAS  Google Scholar 

  76. Huang, W.H., Liu, S., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006). doi:10.1021/ja064776x

    Article  CAS  Google Scholar 

  77. Cao, D., Kou, Y., Liang, J., Chen, Z., Wang, L., Meier, H.: A facile and efficient preparation of pillararenes and a pillarquinone. Angew. Chem. Int. Ed. 48, 9721–9723 (2009). doi:10.1002/anie.200904765

    Article  CAS  Google Scholar 

  78. Gutsche, C.D., Bauer, L.J. Calixarenes. 5. Dynamic NMR characteristics of p-tert-butylcalix[4]-arene and p-tert-butylcalix[8]arene. Tetrahedron Lett. 22, 4763–4766 (1981). doi:10.1016/S0040-4039(01)92337-8

  79. Iwamoto, K., Araki, K., Shinkai, S.: Conformations and structures of tetra-O-alkyl-p-tert-butylcalix[4]arenes. How is the conformation of calix[4]arenes immobilized? J. Org. Chem. 56, 4955–4962 (1991). doi:10.1021/jo00016a027

    Article  CAS  Google Scholar 

  80. Oi, S., Miyano, S.: Design and synthesis of chiral stationary phase derived from (S)-[10]paracyclophane-13-carboxylic acid for the HPLC separation of enantiomers. Chem. Lett. 21, 987–990 (1992)

    Article  Google Scholar 

  81. Hattori, T., Harada, N., Oi, S., Abe, H., Miyano, S.: 1,12-Dioxa[12](1,4)naphthalenophane-14-carboxylic acid: practical synthesis, resolution and absolute configuration of the enantiomers. Tetrahedron Asymmetr. 6, 1043–1046 (1995). doi:10.1016/0957-4166(95)00120-E

    Article  CAS  Google Scholar 

  82. Fiesel, R., Huber, J., Scherf, U.: Synthesis of an optically active poly(para-phenylene) ladder polymer. Angew. Chem. Int. Ed. 35, 2111–2113 (1996). doi:10.1002/anie.199621111

    Article  CAS  Google Scholar 

  83. Fiesel, R., Huber, J., Apel, U., Enkelmann, V., Hentschke, R., Scherf, U., Cabrera, K.: Novel chiral poly(para-phenylene) derivatives containing cyclophane-type moieties. Macromol. Chem. Phys. 198, 2623–2650 (1997). doi:10.1002/macp.1997.021980901

    Article  CAS  Google Scholar 

  84. Katoono, R., Kawai, H., Hujiwara, K., Suzuki, T.: [10]Paracyclophanediamides and their octadehydro derivatives: novel exotopic receptors with hydrogen-bonding sites on the bridge. Tetrahedron Lett. 45, 8455–8459 (2004). doi:10.1016/j.tetlet.2004.09.115

    Article  CAS  Google Scholar 

  85. Ogoshi, T., Kitajima, K., Aoki, T., Yamagishi, T., Nakamoto, Y.: Effect of an intramolecular hydrogen bond belt and complexation with the guest on the rotation behavior of phenolic units in pillar[5]arenes. J. Phys. Chem. Lett. 1, 817–821 (2010). doi:10.1021/jz900437r

    Article  CAS  Google Scholar 

  86. Li, C., Xu, Q., Li, J., Yao, F., Jia, X.: Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Org. Biomol. Chem. 8, 1568–1576 (2010). doi:10.1039/b920146g

    Article  CAS  Google Scholar 

  87. Ogoshi, T., Tanaka, S., Yamagishi, T., Nakamoto, Y.: Ionic liquid molecules (ILs) as novel guests for pillar[5]arene: 1:2 host-guest complexes between pillar[5]arene and ILs in organic media. Chem. Lett. 40, 96–98 (2011). doi:10.1246/cl.2011.96

    Article  CAS  Google Scholar 

  88. Monk, P.M.S. (ed.): The Viologens Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine. Wiley, New York (1998)

    Google Scholar 

  89. Li, C., Zhao, L., Li, J., Ding, X., Chen, S., Zhang, Q., Yu, Y., Jia, X.: Self-assembly of [2]pseudorotaxanes based on pillar[5]arene and bis(imidazolium) cations. Chem. Commun. 46, 9016–9018 (2010). doi:10.1039/c0cc03575k

    Article  CAS  Google Scholar 

  90. Strutt, N.L., Forgan, R.S., Spruell, J.M., Botros, Y.Y., Stoddart, J.F.: Monofunctionalized pillar[5]arene as a host for alkanediamines. J. Am. Chem. Soc. 133, 5668–5671 (2011). doi:10.1021/ja111418j

    Article  CAS  Google Scholar 

  91. Harada, A., Kamachi, M.: Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23, 2821–2823 (1990). doi:10.1021/ma00212a039

    Article  CAS  Google Scholar 

  92. Harada, A.: Design and construction of supramolecular architectures consisting of cyclodextrins and polymers. Adv. Polym. Sci. 133, 141–191 (1997). doi:10.1007/3-540-68442-5_4

    Article  CAS  Google Scholar 

  93. Harada, A., Li, J., Kamachi, M.: The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992). doi:10.1038/356325a0

    Article  CAS  Google Scholar 

  94. Ito, K.: Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym. J. 39, 489–499 (2007). doi:10.1295/polymj.PJ2006239

    Article  CAS  Google Scholar 

  95. Wu, Y.L., Li, J.: Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles. Angew. Chem. Int. Ed. 48, 3842–3845 (2009). doi:10.1002/anie.200805341

    Article  CAS  Google Scholar 

  96. Ooya, T., Eguchi, M., Yui, N.: Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A. J. Am. Chem. Soc. 125, 13016–13017 (2003). doi:10.1021/ja034583z

    Article  CAS  Google Scholar 

  97. Reczek, J.J., Kennedy, A.A., Halbert, B.T., Urbach, A.R.: Multivalent recognition of peptides by modular self-assembled receptors. J. Am. Chem. Soc. 131, 2408–2415 (2009). doi:10.1021/ja808936y

    Article  CAS  Google Scholar 

  98. Tan, Y., Choi, S.W., Lee, J.W., Ko, Y.H., Kim, K.: Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules 35, 7161–7165 (2002). doi:10.1021/ma020534f

    Article  CAS  Google Scholar 

  99. Ooya, T., Inoue, D., Choi, H.S., Kobayashi, Y., Loethen, S., Thompson, D.H., Ko, Y.H., Kim, K., Yui, N.: pH-responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl α-cyclodextrin and cucurbit[7]uril. Org. Lett. 8, 3159–3162 (2006). doi:10.1021/ol060697e

    Article  CAS  Google Scholar 

  100. Liu, Y., Ke, C.F., Zhang, H.Y., Wu, W.J., Shi, J.: Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. J. Org. Chem. 72, 280–283 (2007). doi:10.1021/jo0617159

    Article  CAS  Google Scholar 

  101. Ogoshi, T., Masuda, K., Yamagishi, T., Nakamoto, Y.: Side-chain polypseudorotaxanes with heteromacrocyclic receptors of cyclodextrins (CDs) and cucurbit[7]uril (CB7): their contrast lower critical solution temperature behavior with α-CD, γ-CD, and CB7. Macromolecules 42, 8003–8005 (2009). doi:10.1021/ma901474b

    Article  CAS  Google Scholar 

  102. Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: Polypseudorotaxane constructed from pillar[5]arene and viologen polymer. Macromolecules 43, 3145–3147 (2010). doi:10.1021/ma100079g

    Article  CAS  Google Scholar 

  103. Ogoshi, T., Nishida, Y., Yamagishi, T., Nakamoto, Y.: High yield synthesis of polyrotaxane constructed from pillar[5]arene and viologen polymer and stabilization of its radical cation. Macromolecules 43, 7068–7072 (2010). doi:10.1021/ma101320z

    Article  CAS  Google Scholar 

  104. Zhao, T., Beckham, H.W.: Direct synthesis of cyclodextrin-rotaxanated poly(ethylene glycol)s and their self-diffusion behavior in dilute solution. Macromolecules 36, 9859–9865 (2003). doi:10.1021/ma035513f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the organizing committee of Host–Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2010 and the opportunity of writing this review. He especially acknowledges Prof. Yoshiaki Nakamoto and Prof. Tada-aki Yamagishi (Kanazawa University) for their suggestions and discussions; Mr. Keisuke Kitajima and Mr. Takamichi Aoki (Kanazawa University) for their great contributions to this work. Dr. Shuhei Fujinami (Kanazawa University) for performing X-ray structural analysis. This work was partly supported by Grant-in-Aid for Young Scientists (B) (No. 19750110, 21750140) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Ogoshi.

Additional information

This article is selected for “HGCS Japan Award of Excellence 2010”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogoshi, T. Synthesis of novel pillar-shaped cavitands “Pillar[5]arenes” and their application for supramolecular materials. J Incl Phenom Macrocycl Chem 72, 247–262 (2012). https://doi.org/10.1007/s10847-011-0027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0027-2

Keywords

Navigation