Skip to main content
Log in

Adaptive Neural Compliant Force-Position Control of Serial PAM Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes the novel adaptive neural network (ADNN) compliant force/position control algorithm applied to a highly nonlinear serial pneumatic artificial muscle (PAM) robot as to improve its compliant force/position output performance. Based on the new adaptive neural ADNN model which is dynamically identified to adapt well all nonlinear features of the 2-axes serial PAM robot, a new hybrid adaptive neural ADNN-PID controller was initiatively implemented for compliant force/position controlling the serial PAM robot system used as an elbow and wrist rehabilitation robot which is subjected to not only the internal coupled-effects interactions but also the external end-effecter contact force variations (from 10[N] up to critical value 30[N]). The experiment results have proved the feasibility of the new control approach compared with the optimal PID control approach. The novel proposed hybrid adaptive neural ADNN-PID compliant force/position controller successfully guides the upper limb of subject to follow the linear and circular trajectories under different variable end-effecter contact force levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatron. 2(4), 259–267 (1997)

    Article  Google Scholar 

  2. Beyl, P., Damme, M.V., Ham, R.V., Vanderborght, B., Lefeber, D.: Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons. IEEE/ASME Trans. Mechatron. 19(3), 1046–1056 (2013)

    Article  Google Scholar 

  3. Aschemann, H., Schindele, D.: Sliding-mode control of a high-speed linear axis driven by pneumatic muscle actuators. IEEE Trans. Ind. Electron. 55(11), 3855–3864 (2008)

    Article  Google Scholar 

  4. Cozens, J.A.: Robotic assistance of an active upper limb exercise in neurological impaired patients. IEEE Tran. Rehab. Eng. 7(4), 254–256 (1999)

    Article  Google Scholar 

  5. Jeh, T.J., Wu, M.J., Lu, T.J., Wu, F.K., Huang, C.R.: Control of McKibben pneumatic muscles for a power-assist lower-limb orthosis. Mechatronics 20(6), 686–697 (2010)

    Article  Google Scholar 

  6. Liem, D.T., Park, H.G., Ahn, K.K.: A feedforward NN fuzzy grey predictor-based controller for force control of an electro-hydraulic actuator. Int. J. Precis. Eng. Manuf. 17(3), 309–321 (2016)

    Article  Google Scholar 

  7. Sun, N., Wu, Y., Fang, Y., Chen, H., Lu, B.: Nonlinear continuous global stabilization control for under-actuated RTAC systems: Design, analysis, and experimentation, IEEE/ASME Transactions on Mechatronics. online published, doi:10.1109/TMECH.2016.2631550 (2016)

  8. Sun, N., Fang, Y., Chen, H., Lu, B.: Amplitude-saturated nonlinear output feedback anti-swing control for under-actuated cranes with double-pendulum cargo dynamics, IEEE Transactions on Industrial Electronics. online published, doi:10.1109/TIE.2016.2623258 (2016)

  9. Jahanabadi, H., Mailah, M., Md Zain, M.Z., Hooi, H.M.: Active force with fuzzy logic control of a Two-Link arm driven by pneumatic artificial muscles. J. Bionic Eng. 8, 474–484 (2011)

    Article  Google Scholar 

  10. Hall, K.L., Phillips, C.A., Reynolds, D.B., Mohler, S.R., Rogers, D.B., Neidhard-Doll, A.T.: Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise: Part I–dynamic test station and human quadriceps dynamic simulator. Comput. Methods Biomech. Biomed. Engin. 17(12), 1391–1401 (2014)

    Article  Google Scholar 

  11. Kobayashi, H., Uchimura, A., Shiiba, T.: Development of muscle suit for upper body. Proc. Intell. Robot. Syst. (IROS 2003-IEEE Int. Conference) 4, 3624–3629 (2003)

    Google Scholar 

  12. Hall, K.L., Phillips, C.A., Reynolds, D.B., Mohler, S.R., Rogers, D.B., Neidhard-Doll, A.T.: Haptic Control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise: Part II: control development and testing. Comput. Methods Biomech. Biomed. Engin. 18(1), 1–14 (2015)

    Article  Google Scholar 

  13. Liu, H., Yan, J., Zhou, Y., Li, H., Li, C.: A novel dynamic cardiac simulator utilizing pneumatic artificial muscle., Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 07/2013; 2013:715–718

  14. Kawamura, T., Takanaka, K., Nakamura, T., Osumi, H.: Development of an orthosis for walking assistance using pneumatic artificial muscle: A quantitative assessment of the effect of assistance. IEEE International Conference on Rehabilitation Robotics: [proceedings] 06/2013;2013:1–6

  15. Tri, V., Tjahjowidodo, T., Ramon, H., Van Brussel, H.: Cascade Position control of a single pneumatic artificial muscle-mass system with hysteresis compensation. Mechatronics, Elsevier 20 (3), 402–414 (2010)

  16. Ganguly, S., Garg, A., Pasricha, A., Dwivedy, S.K.: Control of pneumatic artificial muscle system through experimental modelling. Mechatronics 22(8), 1135–1147 (2012)

    Article  Google Scholar 

  17. Egawa, M., Watanabe, T., Nakamura, T.: Development of a wearable haptic device with pneumatic artificial muscles and MR brake. IEEE Virtual Reality (VR), Arles 2015, 173–174 (2015)

    Google Scholar 

  18. Ahn, K.K., Nguyen, H.T.C.: Intelligent switching control of a pneumatic muscle robot arm using learning vector quantization neural network. Mechatronics 17, 255–262 (2007)

    Article  Google Scholar 

  19. Jiang, X., Wang, Z., Zhang, C., Yang, L.: Fuzzy neural network control of the rehabilitation robotic arm driven by pneumatic muscles. Ind. Robot An Int. J. 42(1), 36–43 (2015)

    Article  Google Scholar 

  20. Song, C., Xie, S., Zhou, Z., Hu, Y.: Modeling of pneumatic artificial muscle using a hybrid artificial neural network approach. Mechatronics 31, 124–131 (2015)

    Article  Google Scholar 

  21. Fan, J., Zhong, J., Zhao, J., Zhu, Y.: BP Neural network tuned PID controller for position tracking of a pneumatic artificial muscle. Technol. Heal. Care 23(s2), S231–S238 (2015)

    Article  Google Scholar 

  22. Sabzehmeidani, Y., Mailah, M., Hussein, M., Gatavi, E., Md Zain, M.Z.: A hybrid fuzzy-based robust controller for pneumatically actuated micro-robot. Int. Rev. Model. Simul. 3, 1308–1316 (2010)

    Google Scholar 

  23. Zhu, X., Tao, G., Yao, B., Cao, J.: Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles. Automatica 44, 2248–2257 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ba, D.X., Dinh, T.Q., Ahn, K.K.: An integrated intelligent nonlinear control method for a pneumatic artificial muscle. IEEE/ASME Trans. Mechatron. 21(4), 1835–1845 (2016)

    Article  Google Scholar 

  25. Xu, B., Yang, C., Shi, Z.: Reinforcement learning output feedback NN control using deterministic learning technique. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 635–641 (2014)

    Article  Google Scholar 

  26. Xu, B, Shi, Z, Yang, C.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in Strict-Feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014)

    Article  Google Scholar 

  27. Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2563–2575 (2015)

    Article  MathSciNet  Google Scholar 

  28. Boerlage, M., Steinbuch, M., Lambrechts, P., van de Wal, M.: Model–Based Feedforward for Motion Systems. Proceedings of IEEE Conference on Control Applications, 2003, pp. 1158–1163

  29. Balasubramanian, K., Rattan, K.S.: Feed-forward control of a non-linear pneumatic muscle system using fuzzy logic. In: Proceedings of IEEE Int., Conf., Fuzzy Systems, vol. 1, pp. 272–277 (2003)

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 107.01-2015.23 and by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number B2016-20-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Pham Huy Anh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huy Anh, H.P., Son, N.N. & Van Kien, C. Adaptive Neural Compliant Force-Position Control of Serial PAM Robot. J Intell Robot Syst 89, 351–369 (2018). https://doi.org/10.1007/s10846-017-0570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0570-1

Keywords

Navigation