Skip to main content

Advertisement

Log in

Switched Modeling and Task–Priority Motion Planning of Wheeled Mobile Robots Subject to Slipping

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This study is devoted to the modelling and control of Wheeled Mobile Robots moving with longitudinal and lateral slips of all wheels. Due to wheel slippage we have to deal with systems with changing dynamics. Wheeled Mobile Robots can be thus modeled as switched systems with both autonomous switches (due to wheel slippage) and smooth controls (due to control algorithm). It is assumed that the slipping is counteracted by the slip reaction forces acting at contact points of the wheels with the ground. A model of these reaction forces, borrowed from the theory of automotive systems, has been adopted and included into the Lagrangian dynamic equations of the robot. A framework for designing motion planning schemes devoid of chattering effects for systems with changing dynamics is presented. A task–priority motion planning problem for wheeled mobile robots subject to slipping is addressed and solved by means of Jacobian motion planning algorithm based on the Endogenous Configuration Space Approach. Performance of the algorithm is presented in simulations of the Pioneer 2DX mobile platform. The robot dynamics equations are derived and 4 variants of motion are distinguished. The motion planning problem is composed of two sub-tasks: robot has to reach a desired point in the task space (proper motion planning) and the motion should minimize either the control energy expendinture or the wheel slippage. Performance of the motion planning algorithm is illustrated by a sort of the parking maneuver problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Andrea-Novel, B., Campion, G., Bastin, G.: Control of wheeled mobile robots not satisfying ideal velocity constraints: a singular perturbation approach. Int. J. Robust Nonlinear Control 5, 243–267 (1995)

    Article  MathSciNet  Google Scholar 

  2. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25, 985–994 (2009)

    Article  Google Scholar 

  3. Broggi, A., et al.: Intelligent vehicles. In: Springer Handbook of Robotics, pp. 1175–1198. Springer, Berlin (2008)

  4. Burckhardt, M.: Fahrwerktechnik: Radschlupf-Regelsysteme, Würzburg, Vogel Fachbuch (1993)

    Google Scholar 

  5. Caldwell, T.M., Murphey, T.D.: Switching mode generation and optimal estimation with application to skisteering. Automatica 47, 50–64 (2011)

    Article  Google Scholar 

  6. Canudas de Wit, C., Tsiotras, P., Velenis, E., Basset, M., Gissinger, G.: Dynamic friction models for road/tire longitudinal interaction. Veh. Syst. Dyn. 39(3), 189–226 (2003)

    Article  Google Scholar 

  7. Chitour, Y., Sussmann, H.J.: Motion planning using the continuation method. In: Essays on Mathematical Robotics, pp. 91–125. Springer, New York (1998)

  8. Cortes Monforte, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Springer, New York (2002)

    Book  Google Scholar 

  9. Dixon, W.E., Dawson, D.M., Zergeroglu, E., Behal, A.: Nonlinear Control of Wheeled Mobile Robots. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Giergiel, J., et al.: Symbolic generation of the kinematics equations of the mobile robot Pioneer – 2DX. Przegla̧d Mechaniczny 19–20(/2000), 26–31 (2000) (in Polish)

    Google Scholar 

  11. Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J.L., Rodriguez, F.: Adaptive control for a mobile robot under slip conditions using a LMI–based approach, pp. 1251–1256. In: Proceedings of the European Control Conference (2009)

  12. Hendzel, Z., Trojnacki, M.: Neural network identifier of a four–wheeled mobile robot subject to wheel slip. J. Autom. Mob. Robot. Intell. Syst. 8(4), 24–30 (2014)

    Google Scholar 

  13. Iagnemma, K., Ward, Ch.C.: Classification–based wheel slip detection and detector fusion for mobile robots on outdoor terrain. Auton. Robot. 26, 33–46 (2009)

    Article  Google Scholar 

  14. Janiak, M., Tchoń, K.: Constrained motion planning for nonholonomic systems. Syst. Control Lett. 60, 625–631 (2011)

    Article  MathSciNet  Google Scholar 

  15. Jung, S., Wen, J.T.: Nonlinear model predictive control for the swing–up of a rotary inverted pendulum. J. Dyn. Syst. Meas. Control 126, 666–673 (2004)

    Article  Google Scholar 

  16. Karnop, D.: Vehicle Dynamics, Stability, and Control. CRC Press, Boca Raton (2013)

    Google Scholar 

  17. Khan, H., Iqbal, J., Baizid, K., Zielińska, T.: Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking. Front Inform. Technol. Electron. Eng. 16(2), 166–172 (2015)

    Article  Google Scholar 

  18. Kozłowski, K., Pazderski, D.: Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl. Math. Comput. Sci. 14, 477–496 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Kiencke, U., Nielsen, L.: Automotive Control Systems. Springer, Berlin (2000)

    Google Scholar 

  20. Liberzon, D.: Switching in Systems and Control. Springer, Birkäuser (2003)

    Book  Google Scholar 

  21. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. 19(5), 59–70 (2002)

    MATH  Google Scholar 

  22. Morse, A.S.: Control Using Logic–Based Switching. Springer, London (1997)

    Book  Google Scholar 

  23. Pacejka, H.B., Sharp, R.S.: Shear force developments by pneumatic tires in steady–state conditions: a review of modeling aspects. Veh. Syst. Dyn. 20, 121–176 (1991)

    Article  Google Scholar 

  24. Ratajczak, A., Tchoń, K.: Multiple-task motion planning of non-holonomic systems with dynamics. Mech. Sci. 4, 153–166 (2013)

    Article  Google Scholar 

  25. Ratajczak, A., Karpińska, J., Tchoń, K.: Task–priority motion planning of underactuated systems: an endogenous configuration space approach. Robotica 28, 885–892 (2010)

    Article  Google Scholar 

  26. Reina, G.: Methods for wheel slip and sinkage estimation in mobile robots. In: Yussof, H. (eds.) Robot Localization and Map Building, pp. 561–578. InTech (2010)

  27. Seyr, M., Jakubek, S.: Proprioceptive navigation, slip estimation and slip control for autonomous wheeled mobile robots. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 109–114 (2006)

  28. Sussmann, H.J.: New differential geometric methods in nonholonomic path finding. In: Systems, Models, and Feedback, Birkhäuser, pp. 365–384. Boston (1992)

  29. Tchoń, K., Jakubiak, J.: Endogenous configuration space approach to mobile manipulators: a derivation and performance assessment of Jacobian inverse kinematics algorithms. Int. J. Control 76, 1387–1419 (2003)

    Article  MathSciNet  Google Scholar 

  30. Tchoń, K., Zadarnowska, K. , Juszkiewicz, Ł., Arent, K.: Modeling and control of a skid-steering mobile platform with coupled side wheels. Bull. Polish Acad. Sci. 63(3), 807–818 (2015)

    Google Scholar 

  31. Tian, Y., Sarkar, N.: Control of a mobile Robot Subject to Wheel Slip. J. Intell. Robot Syst. 74 (3–4), 915–929 (2014)

    Article  Google Scholar 

  32. Wang, D., Low, C.B.: Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Trans. Robot. 24(3), 676–687 (2008)

    Article  Google Scholar 

  33. Li, L., Wang, F.Y.: Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control. IEEE Trans. Intell. Transp. Syst. 7(1), 1–19 (2006)

    Article  MathSciNet  Google Scholar 

  34. Ward, Ch.C., Iagnemna, K.: A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain. IEEE Trans. Robot. 24, 821–831 (2008)

    Article  Google Scholar 

  35. Wei, S., Uthaichana, K., Z̆efran, M., DeCarlo, R.: Hybrid model predictive control for the stabilization of wheeled mobile robots subject to wheel slippage. IEEE Trans. Control Syst. Technol. 121(6), 2181–2193 (2013)

    Article  Google Scholar 

  36. de Wit, C.C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, New York (1996)

    Book  Google Scholar 

  37. Wong, J.Y.: Theory of Ground Vehicles. Wiley, New York (2001)

    Google Scholar 

  38. Yoshida, K., Wilcox, B.: Space robots and systems. In: Springer Handbook of Robotics, pp. 1031–1063. Springer, Berlin (2008)

  39. Zadarnowska, K., Tchoń, K.: A control theory framework for performance evaluation of mobile manipulators. Robotica 25, 703–715 (2007)

    Article  Google Scholar 

  40. Zadarnowska, K., Ratajczak, A.: Task–priority motion planning of wheeled mobile robots subject to slipping. In: Kozłowski, K. R. (ed.) Robot Motion and Control. Lecture Notes in Control and Information Sciences, pp. 75–85. Springer, London (2012)

  41. Zadarnowska, K., Tchoń, K. In: Kozłowski, K. R. (ed.) : Modeling and motion planning of wheeled mobile robots subject to slipping, pp. 78–83. Springer, London (2015)

  42. Z̆efran, M., Burdick, J.W.: Design of switching controllers for systems with changing dynamics. In: Proceeding of 37th IEEE Conference on Dec. & Contr., pp. 2113–2118 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Zadarnowska.

Additional information

This work was supported by the Wrocław University of Technology under a statutory research project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadarnowska, K. Switched Modeling and Task–Priority Motion Planning of Wheeled Mobile Robots Subject to Slipping. J Intell Robot Syst 85, 449–469 (2017). https://doi.org/10.1007/s10846-016-0397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0397-1

Keywords

Navigation