Skip to main content
Log in

Inverse Kinematics Based Human Mimicking System using Skeletal Tracking Technology

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Humanoid robots needs to have human-like motions and appearance in order to be well-accepted by humans. Mimicking is a fast and user-friendly way to teach them human-like motions. However, direct assignment of observed human motions to robot’s joints is not possible due to their physical differences. This paper presents a real-time inverse kinematics based human mimicking system to map human upper limbs motions to robot’s joints safely and smoothly. It considers both main definitions of motion similarity, between end-effector motions and between angular configurations. Microsoft Kinect sensor is used for natural perceiving of human motions. Additional constraints are proposed and solved in the projected null space of the Jacobian matrix. They consider not only the workspace and the valid motion ranges of the robot’s joints to avoid self-collisions, but also the similarity between the end-effector motions and the angular configurations to bring highly human-like motions to the robot. Performance of the proposed human mimicking system is quantitatively and qualitatively assessed and compared with the state-of-the-art methods in a human-robot interaction task using Nao humanoid robot. The results confirm applicability and ability of the proposed human mimicking system to properly mimic various human motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almetwally, I., Mallem, M.: Real-time tele-operation and tele-walking of humanoid Robot Nao using Kinect Depth Camera. In: 10th IEEE international conference on networking, sensing and control (ICNSC) 2013, pp. 463-466

  2. Ningjia, Y., Feng, D., Yudi, W., Chuang, L., Tan, J.T.C., Binbin, X., Jin, Z.: A study of the human-robot synchronous control system based on skeletal tracking technology. In: IEEE International Conference on Robotics and Biomimetics (ROBIO) 2013, pp. 2191-2196

  3. Siscart, M.J.R., Gibert, M.G., Alenyá, G., Industrial, I.D.R.I.I.: Algorithms and graphic interface design to control and teach a humanoid robot through human imitation. Universitat Politécnica de Catalunya (2011)

  4. Luo, R.C., Shih, B.-H., Lin, T.-W.: Real time human motion imitation of anthropomorphic dual arm robot based on Cartesian impedance control. In: IEEE international symposium on robotic and sensors environments (ROSE) 2013, pp. 25-30

  5. Mota, E., Moreira, A.P., do Nascimento, T.P.: Motion and Teaching of a NAO Robot. Provas de Dissertacao do MIEEC, Portugal (2011)

    Google Scholar 

  6. Wang, F., Cheng, T., Yongsheng, O., Yangsheng, X.: A real-time human imitation system. In: 10th World Congress on Intelligent Control and Automation (WCICA), 6-8 July 2012, pp. 3692-3697

  7. Kurt, B.: Imitation of human arm movements by a humanoid robot using monocular vision. Bogaziçi University, Master of Science (2009)

    Google Scholar 

  8. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Handbook of Robotics Chapter 59: Robot Programming by Demonstration. Handbook of Robotics Springer (2008)

  9. Kemp, C.C., Edsinger, A., Torres-Jara, E.: Challenges for robot manipulation in human environments. IEEE Robot. Autom. Mag. 14(1), 20–29 (2007)

    Article  Google Scholar 

  10. Li, Z., Yang, C., Su, C. -Y., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)

    Article  Google Scholar 

  11. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Transactions on Cybernetics 46(3), 620–629 (2016)

    Article  Google Scholar 

  12. He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. Hum. 99, 1–12 (2016)

    Google Scholar 

  13. He, W., Dong, Y., Sun, C.: Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46(3), 334–344 (2016). doi:10.1109/TSMC.2015.2429555

    Article  Google Scholar 

  14. Zannatha, J.M.I., Tamayo, A.J.M., Sanchez, A.D.G., Delgado, J.E.L., Cheu, L.E.R., Arevalo, W.A.S.: Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation. Comput. Methods Prog. Biomed 112(2), 239–249 (2013)

    Article  Google Scholar 

  15. Microsoft: Kinect for Windows. (2015)

  16. Aldebaran: NAO Humanoid Robot. https://www.aldebaran.com/en 2015

  17. Krüger, B., Baumann, J., Abdallah, M., Weber, A.: A Study On Perceptual Similarity of Human Motions. In: Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS) 2011, pp. 65-72

  18. Tang, J.K., Leung, H., Komura, T., Shum, H.P.: Emulating human perception of motion similarity. Comput. Anim. Virtual Worlds 19(3-4), 211–221 (2008)

    Article  Google Scholar 

  19. Zuher, F., Romero, R.: Recognition of Human Motions for Imitation and Control of a Humanoid Robot. In: Brazilian robotics symposium and latin american robotics symposium (SBR-LARS), 16-19 Oct. 2012, pp. 190-195

  20. Riley, M., Ude, A., Wade, K., Atkeson, C.G.: Enabling real-time full-body imitation: a natural way of transferring human movement to humanoids. In: IEEE international conference on robotics and automation (ICRA’03) 2003, pp. 2368-2374

  21. Ude, A., Man, C., Riley, M., Atkeson, C.G.: Automatic generation of kinematic models for the conversion of human motion capture data into humanoid robot motion. In: Proceedings of the first IEEE-RAS conference on humanoid robotics (Humanoids) 2000, pp. 1-9

  22. Do, M., Azad, P., Asfour, T., Dillmann, R.: Imitation of human motion on a humanoid robot using non-linear optimization. In: 8th IEEE-RAS international conference on humanoids 2008, pp. 545-552

  23. Terlemez, O., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., Asfour, T.: Master Motor Map (MMM)—Framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots. In: 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2014, pp. 894-901

  24. Koenemann, J., Burget, F., Bennewitz, M.: Real-time imitation of human whole-body motions by humanoids. In: IEEE international conference on robotics and automation (ICRA) 2014, pp. 2806-2812

  25. Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuchi, K.: Generating whole body motions for a biped humanoid robot from captured human dances. In: IEEE international conference on robotics and automation (ICRA’03) 2003, pp. 3905-3910

  26. Yamane, K., Hodgins, J.: Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2009, pp. 2510-2517

  27. Sakka, S., Poubel, L.P., Cehajic, D.: Tasks prioritization for whole-body realtime imitation of human motion by humanoid robots. In: Digital Intelligence (DI2014), September 2014, pp. 1-5

  28. Kim, C., Kim, D., Oh, Y.: Adaptation of human motion capture data to humanoid robots for motion imitation using optimization. Integrated computer-aided engineering 13(4), 377–389 (2006)

    Google Scholar 

  29. Tosun, T., Mead, R., Stengel, R.: A general method for kinematic retargeting: adapting poses between humans and robots. In: ASME 2014 international mechanical engineering congress and exposition 2014, pp. V04AT04A027-V004AT004A027

  30. Microsoft: Joint Filtering. https://msdn.microsoft.com/en-us/library/jj131024.aspx 2015

  31. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  32. Aldebaran: H25 - Links - NAO V 3.2. http://doc.aldebaran.com/1-14/family/naoh25/linksh25v32.html#h25-links-v32 2015

  33. Kim, S., Shukla, A., Billard, A.: Catching objects in flight. IEEE Trans. Robot. 30(5), 1049–1065 (2014)

    Article  Google Scholar 

  34. Guan, Y., Yokoi, K.: Reachable space generation of a humanoid robot using the monte carlo method. In: IEEE/RSJ international conference on intelligent robots and systems 2006, pp. 1984-1989

  35. Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: representing robot capabilities. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2007, pp. 3229-3236

  36. Kofinas, N., Orfanoudakis, E., Lagoudakis, M.G.: Complete analytical forward and inverse kinematics for the NAO humanoid robot. J. Intell. Robot. Syst. 77(2), 251–264 (2015)

    Article  Google Scholar 

  37. Aldebaran: H25 - Joints - NAO V 3.2. http://doc.aldebaran.com/1-14/family/naoh25/jointsh25v32.html#h25-joints-v32 2015

  38. Jazar, R.N.: Theory of applied robotics: kinematics, dynamics, and control. Springer Science and Business Media (2010)

  39. Sciavicco, L., Siciliano, B., Villani, L., Oriolo, G.: Robotics: modelling, planning and control. In: Springer London, 2009

  40. Aldebaran: NAOqi Motion. http://doc.aldebaran.com/1-14/naoqi/motion/index.html#almotion 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Alibeigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alibeigi, M., Rabiee, S. & Ahmadabadi, M.N. Inverse Kinematics Based Human Mimicking System using Skeletal Tracking Technology. J Intell Robot Syst 85, 27–45 (2017). https://doi.org/10.1007/s10846-016-0384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0384-6

Keywords

Navigation