Skip to main content
Log in

Robotic Task Sequencing Problem: A Survey

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Today, robotics is an important cornerstone of modern industrial production. Robots are used for numerous reasons including reliability and continuously high quality of work. The main decision factor is the overall efficiency of the robotic system in the production line. One key issue for this is the optimality of the whole set of robotic movements for industrial applications, which typically consist of multiple atomic tasks such as welding seams, drilling holes, etc. Currently, in many industrial scenarios such movements are optimized manually. This is costly and error-prone. Therefore, researchers have been working on algorithms for automatic computation of optimal trajectories for several years. This problem gets even more complicated due to multiple additional factors like redundant kinematics, collision avoidance, possibilities of ambiguous task performance, etc. This survey article summarizes and categorizes the approaches for optimization of the robotic task sequence. It provides an overview of existing combinatorial problems that are applied for robot task sequencing. It also highlights the strengths and the weaknesses of existing approaches as well as the challenges for future research in this domain. The article is meant for both scientists and practitioners. For scientists, it provides an overview on applied algorithmic approaches. For practitioners, it presents existing solutions, which are categorized according to the classes of input and output parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Malek, L.L., Li, Z.: Robot location for minimum cycle time. Eng. Costs Prod. Econ. 17(1), 29–34 (1989)

    Article  Google Scholar 

  2. Abdel-Malek, L.L., Li, Z.: The application of inverse kinematics in the optimum sequencing of robot tasks. Int. J. Prod. Res. 28(1), 75–90 (1990)

    Article  Google Scholar 

  3. Alatartsev, S., Augustine, M., Ortmeier, F.: Constricting insertion heuristic for traveling salesman problem with neighborhoods. In: 23rd International Conference on Automated Planning and Scheduling (ICAPS) (2013)

  4. Alatartsev, S., Belov, A., Nykolaychuk, M., Ortmeier, F.: Robot trajectory optimization for the relaxed end-effector path. In: 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2014)

  5. Alatartsev, S., Mersheeva, V., Augustine, M., Ortmeier, F.: On optimizing a sequence of robotic tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

  6. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press (2007)

  7. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 55, 197–218 (1995)

    Article  MathSciNet  Google Scholar 

  8. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. 97, 43–69 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Ata, A.A.: Optimal trajectory planning of manipulators: A review. J. Eng. Sci. Technol. 1, 32 (2007)

    MathSciNet  Google Scholar 

  10. Baizid, K., Chellali, R., Yousnadj, A., Meddahi, A., Bentaleb, T.: Genetic algorithms based method for time optimization in robotized site. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1359–1364 (2010)

  11. Berenson, D.: Manipulation of deformable objects without modeling and simulating deformation (2013)

  12. Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions: A framework for pose-constrained manipulation planning. Int. J. Robot. Res. (IJRR) 30(12), 1435–1460 (2011)

    Article  Google Scholar 

  13. Bhatia, A., Maly, M.R., Kavraki, E., Vardi, M.Y.: Motion planning with complex goals. IEEE Robot. Autom. Mag. 18(3), 55–64 (2011)

    Article  Google Scholar 

  14. Biggs, G., MacDonald, B.: A survey of robot programming systems. In: Proceedings of the Australasian Conference on Robotics and Automation (2003)

  15. Bock, F.: An algorithm for solving traveling-salesman and related network optimization problems. In: Unpublished manuscript associated with talk presented at the 14th ORSA National Meeting (1958)

  16. Bu, W., Liu, Z., Tan, J.: Industrial robot layout based on operation sequence optimisation. Int. J. Prod. Res. 41, 4125–4145 (2009)

    Article  Google Scholar 

  17. Cao, T., Sanderson, A.C.: Task sequence planning in a robot workcell using and/or nets. In: Proceedings of the 1991 IEEE International Symposium on Intelligent Control, 1991, pp. 239–244. IEEE (1991)

  18. Chien, S.Y., Xue, L.Q., Palakal, M.: Task planning for a mobile robot in an indoor environment using object-oriented domain information. IEEE Trans. Syst. Man Cybern. B 27(6), 1007–1016 (1997)

    Article  Google Scholar 

  19. Chien, Y., Hudli, A., Palakal, M.: Using many-sorted logic in the object-oriented data model for fast robot task planning. J. Intell. Robot. Syst. 23(1), 1–25 (1998)

    Article  MATH  Google Scholar 

  20. Chin, W.P., Ntafos, S.: The zookeeper route problem. Inf. Sci. Int. J. 63, 245–259 (1992)

    MATH  MathSciNet  Google Scholar 

  21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to Algorithms, Vol. 2. MIT Press, Cambridge (2001)

    Google Scholar 

  22. Craig, J.: Introduction to Robotics: Mechanics and Control. Pearson (2005)

  23. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robot. Autom. Mag. (2012). http://ompl.kavrakilab.org

  24. Dawande, M.W., Geismar, H.N., Sethi, S.P., Sriskandarajah, C.: Throughput Optimization in Robotic Cells, International Series in Operations Research & Management Science, Vol. 101. Springer, US (2007)

    Google Scholar 

  25. Diankov, R., Srinivasa, S.S., Ferguson, D., Kuffner, J.: Manipulation planning with caging grasps. In: 8th IEEE-RAS International Conference on Humanoid Robots, 2008. Humanoids 2008, pp. 285–292. IEEE (2008)

  26. Doria, N.S.F., Freire, E.O., Basilio, J.C.: An algorithm inspired by the deterministic annealing approach to avoid local minima in artificial potential fields. In: 16th International Conference on Advanced Robotics (ICAR), 2013, pp. 1–6. IEEE (2013)

  27. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: 35th Annual ACM Symposium on Theory of Computing, pp. 473–482. ACM Press (2003)

  28. Dubowsky, S., Blubaugh, T.: Planning time-optimal robotic manipulator motions and work places for point-to-point tasks. IEEE Trans. Robot. Autom. 5, 377–381 (1989)

    Article  Google Scholar 

  29. Edan, Y., Flash, T., Peiper, U.M., Shmulevich, I., Sarig, Y.: Near-minimum-time task planning for fruit-picking robots. IEEE Trans. Robot. Autom. 7(1), 48–56 (1991)

    Article  Google Scholar 

  30. Elbassioni, K.M., Fishkin, A.V., Sitters, R.: Approximation algorithms for the Euclidean traveling salesman problem with discrete and continuous neighborhoods. Int. J. Comput. Geom. Appl. 173–193 (2009)

  31. Erdős, G., Kemény, Z., Kovács, A., Váncza, J.: Planning of remote laser welding processes. In: Forty Sixth CIRP Conference on Manufacturing Systems (2013)

  32. Fragkopoulos, C., Abbas, K., Eldeep, A., Graeser, A.: Comparison of sampling based motion planning algorithms specialized for robot manipulators. In: 7th German Conference on Robotics (ROBOTIK) (2012)

  33. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)

    Article  Google Scholar 

  34. Galindo, C., Fernandez-Madrigal, J.A., Gonzalez, J.: Improving efficiency in mobile robot task planning through world abstraction. IEEE Trans. Robot. 20(4), 677–690 (2004)

    Article  Google Scholar 

  35. Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path planning for mobile robot navigation using voronoi diagram and fast marching. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2376–2381 (2006)

  36. Gaschler, A., Petrick, R., Giuliani, M., Rickert, M., Knoll, A.: Kvp: A knowledge of volumes approach to robot task planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 202–208. IEEE (2013)

  37. Gentilini, I., Margot, F., Shimada, K.: The travelling salesman problem with neighbourhoods: MINLP solution. Optim. Methods Softw. 1–15 (2011)

  38. Gentilini, I., Margot, F., Shimada, K.: The travelling salesman problem with neighbourhoods: MINLP solution. Optim. Methods Softw. 28(2), 364–378 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Gentilini, I., Nagamatsu, K., Shimada, K.: Cycle time based multi-goal path optimization for redundant robotic systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

  40. Gipson, I., Gupta, K., Greenspan, M.: MPK: An open extensible motion planning kernel. J. Robot. Syst. 18(8), 433–443 (2001)

    Article  MATH  Google Scholar 

  41. Glover, F.: Tabu search-part i. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  42. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. Eur. J. Oper. Res. 129, 555–568 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gueta, L.B., Cheng, J., Chiba, R., Arai, T., Ueyama, T., Ota, J.: Multiple-goal task realization utilizing redundant degrees of freedom of task and tool attachment optimization. In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 1714–1719 (2011)

  44. Gueta, L.B., Chiba, R., Ota, J., Ueyama, T., Arai, T.: Coordinated motion control of a robot arm and a positioning table with arrangement of multiple goals. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 2252–2258 (2008)

  45. Hassin, R., Keinan, A.: Greedy heuristics with regret, with application to the cheapest insertion algorithm for the TSP. Oper. Res. Lett. 36(2), 243–246 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  47. Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision-free navigation of mobile robots in complex cluttered environments: A survey. Robotica 1–35 (2013)

  48. Huang, Y., Gueta, L.B., Chiba, R., Arai, T., Ueyama, T., Ota, J.: Selection of manipulator system for multiple-goal task by evaluating task completion time and cost with computational time constraints. Adv. Robot. 27(4), 233–245 (2013)

    Article  Google Scholar 

  49. Jan, F., Vojtech Vonásek, L.P.: A multi-goal path planning for goal regions in the polygonal domain. In: European Conference on Mobile Robots (ECMR) (2011)

  50. Jiménez, P.: Survey on model-based manipulation planning of deformable objects. Robot. Comput. Integr. Manuf. 28(2), 154–163 (2012)

    Article  Google Scholar 

  51. Johnson, D.S., McGeoch, L.A.: Local Search in Combinatorial Optimization. Wiley, London (1997)

    Google Scholar 

  52. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  53. Karapetyan, D., Gutin, G.: Lin–Kernighan heuristic adaptations for the generalized traveling salesman problem. Eur. J. Oper. Res. 208(3), 221–232 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE International Conference On Robotics and Automation, pp. 566–580 (1996)

  55. Kolakowska, E., Smith, S.F., Kristiansen, M.: Constraint optimization model of a scheduling problem for a robotic arm in automatic systems. Robot. Auton. Syst. 62(2), 267–280 (2014)

    Article  Google Scholar 

  56. Kovács, A.: Task sequencing for remote laserwelding in the automotive industry. In: 23rd International Conference on Automated Planning and Scheduling (ICAPS) (2013)

  57. Kuffner, J.J., Lavalle, S.M.: RRT-Connect: An efficient approach to single-query path planning. In: IEEE International Conference On Robotics and Automation, pp. 995–1001 (2000)

  58. Lattanzi, L., Cristalli, C.: An efficient motion planning algorithm for robot multi-goal tasks. In: IEEE International Symposium on Industrial Electronics (ISIE) (2013)

  59. LaValle, S., Cheng, P., Kuffner, J., Lindemann, S., Manohar, A., Tovar, B., Yang, L., Yershova, A.: MSL - Motion strategy library, http://msl.cs.uiuc.edu/msl/

  60. LaValle, S.: Planning Algorithms. Cambridge University Press (2006)

  61. Little, J.D., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Oper. Res. 11(6), 972–989 (1963)

    Article  MATH  Google Scholar 

  62. Loredo-Flores, A., González-Galván, E.J., Cervantes-Sánchez, J.J., Martinez-Soto, A.: Optimization of industrial, vision-based, intuitively generated robot point-allocating tasks using genetic algorithms. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 600–608 (2008)

    Article  Google Scholar 

  63. Maimon, O.: The robot task-sequencing planning problem. IEEE Trans. Robot. Autom. 6(6), 760–765 (1990)

    Article  Google Scholar 

  64. Mansard, N., Chaumette, F.: Task sequencing for high-level sensor-based control. IEEE Trans. Robot. 23(1), 60–72 (2007)

    Article  Google Scholar 

  65. Masoud, A.A.: A harmonic potential approach for simultaneous planning and control of a generic UAV platform. J. Intell. Robot. Syst. 65(1–4), 153–173 (2012)

    Article  MATH  Google Scholar 

  66. Mennell, W.: Heuristics for solving three routing problems: close-enough traveling salesman problem, close-enough vehicle routing problem, sequence-dependent team orienteering problem. Ph.D. thesis, University of Maryland (2009)

  67. Mitchell, J.S.: A constant-factor approximation algorithm for TSP with pairwise-disjoint connected neighborhoods in the plane. In: Proceedings of the 2010 annual symposium on Computational geometry, pp. 183–191. SoCG ’10 (2010)

  68. Montemanni, R., Smith, D.H., Gambardella, L.M.: A heuristic manipulation technique for the sequential ordering problem. Comput. Oper. Res. 35(12), 3931–3944 (2008)

    Article  MATH  Google Scholar 

  69. Ntafos, S.: Watchman routes under limited visibility. Comput. Geom. 1, 149–170 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  70. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise disjoint simple polygons. In: Canadian Conference on Computational Geometry, pp. 175–178 (2010)

  71. Pan, Z., Polden, J., Larkin, N., Duin, S.V., Norrish, J.: Recent progress on programming methods for industrial robots. In: Proceedings for the joint conference of 41st Internationel Symposium on Robotics and 6th German Conference on Robotics (2010)

  72. Pchelkin, S., Shiriaev, A., Robertsson, A., Freidovich, L.: Integrated time-optimal trajectory planning and control design for industrial robot manipulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2013)

  73. Petiot, J.F., Chedmail, P., Hascoët, J.Y.: Contribution to the scheduling of trajectories in robotics. Robot. Comput. Integr. Manuf. 14(3), 237–251 (1998)

    Article  Google Scholar 

  74. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Technological Innovation for Sustainability, pp. 139–146. Springer (2011)

  75. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, R.W.E., Ng, A.: ROS: An open-source robot operating system. In: Open-Source Software Workshop of the International Conference on Robotics and Automation (ICRA) (2009)

  76. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: Leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  77. Rego, C., Glover, F.: The Traveling Salesman Problem and its Variations, chap. Local Search and Metaheuristics, pp. 309–368. Kluwer Academic Publishers (2002)

  78. Reinhart, G., Munzert, U., Vogl, W.: A programming system for robot-based remote-laser-welding with conventional optics. CIRP Ann. Manuf. Technol. 57, 37–40 (2008)

    Article  Google Scholar 

  79. Saha, M., Roughgarden, T., Latombe, J.C., Sánchez-Ante, G.: Planning tours of robotic arms among partitioned goals. Robot. Res. 25, 207–223 (2006)

    Article  Google Scholar 

  80. Saha, M., Sánchez-Ante, G., Latombe, J.C.: Planning multi-goal tours for robot arms. In: International Conference on Robotics and Automation (ICRA), vol. 3, pp. 3797–3803. IEEE (2003)

  81. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.X.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103(5), 169–176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  82. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer Verlag, Berlin (2008)

  83. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulationa survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  84. Spitz, S.N., Requicha, A.A.G.: Multiple-goals path planning for coordinate measuring machines. In: IEEE International Conference on Robotics and Automation, pp. 2322–2327 (2000)

  85. Srivastava, S., Kumar, S., Garg, R., Sen, P.: Generalized traveling salesman problem through n sets of nodes. In: CORSE Journal, vol. 7, pp. 97–101 (1969)

  86. Stilman, M.: Global manipulation planning in robot joint space with task constraints. IEEE Trans. Robot. 26(3), 576–584 (2010)

    Article  Google Scholar 

  87. Vicencio, K., Davis, B., Gentilini, I.: Multi-goal path planning based on the generalized traveling salesman problem with neighborhoods. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)

  88. Wang, L., Keshavarzmanesh, S., Feng, H.Y., Buchal, R.O.: Assembly process planning and its future in collaborative manufacturing: A review. Int. J. Adv. Manuf. Technol. 41(1–2), 132–144 (2009)

    Article  Google Scholar 

  89. Wurll, C., Henrich, D.: Point-to-point and multi-goal path planning for industrial robots. J. Robot. Syst. 18(8), 445–461 (2001)

    Article  MATH  Google Scholar 

  90. Wurll, C., Henrich, D., Wörn, H.: Multi-goal path planning for industrial robots. In: International Conference on Robotics and Application (1999)

  91. Xidias, E.K., Zacharia, P.T., Aspragathos, N.A.: Time-optimal task scheduling for articulated manipulators in environments cluttered with obstacles. In: Robotica, vol. 28, pp. 427–440. Cambridge University Press (2010)

  92. Yang, H., Shao, H.: Distortion-oriented welding path optimization based on elastic net method and genetic algorithm. J. Mater. Process. Technol. 209(9), 4407–4412 (2009)

    Article  Google Scholar 

  93. Yao, J., Lin, C., Xie, X., Wang, A., Hung, C.C.: Path planning for virtual human motion using improved a* star algorithm. In: Seventh International Conference on Information Technology: New Generations (ITNG), 2010, pp. 1154–1158. IEEE (2010)

  94. Zacharia, P.T., Aspragathos, N.A.: Optimal robot task scheduling based on genetic algorithms. Robot. Comput. Integr. Manuf. 21, 67–79 (2005)

    Article  Google Scholar 

  95. Zacharia, P., Xidias, E., Aspragathos, N.: Task scheduling and motion planning for an industrial manipulator. Robot. Comput. Integr. Manuf. 29, 449–462 (2013)

    Article  Google Scholar 

  96. Zhang, K., Collins Jr, E.G., Barbu, A.: An efficient stochastic clustering auction for heterogeneous robotic collaborative teams. J. Intell. Robot. Syst. 72(3–4), 541–558 (2013)

    Article  Google Scholar 

  97. Zhang, K., Collins Jr, E.G., Shi, D.: Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction. ACM Trans. Auton. Adapt. Syst. (TAAS) 7(2), 21 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Alatartsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alatartsev, S., Stellmacher, S. & Ortmeier, F. Robotic Task Sequencing Problem: A Survey. J Intell Robot Syst 80, 279–298 (2015). https://doi.org/10.1007/s10846-015-0190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0190-6

Keywords

Navigation