Skip to main content

Advertisement

Log in

Fault feature enhancement for rotating machinery based on quality factor analysis and manifold learning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

This paper explores an improved time-frequency signature to enhance the periodic transient shocks of the signal, called impulse-enhanced signature (IES) for identifying rotating machine faults. IES is extracted in the following steps: first, phase space reconstruction is applied to the analyzed signal to present its dynamic signature in high-dimensional space; second, employ quality factor (Q-factor) based decomposition on the phase space to separate the fault transient component from the vibration signal; third, utilize the continuous wavelet transform to present nonstationary information embedded in the signal and finally, IES is obtained by optimizing the low-dimension structure, which is extracted from the phase space using manifold learning. The IES significantly improves the fault information with a highly regular representation, especially for weak fault-induced impulses, and its advantages over other approaches include noise suppression and energy concentration. One simple IES based curve, time marginal amplitude (TMA), is extracted to further detect the fault characteristic frequency and evaluate the performance of IES. Simulation and experiments confirm the effectiveness of the proposed method. Results indicate that IES outperforms traditional empirical mode decomposition envelop analysis for diagnosing rotating machine faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Afonso, M. V., Bioucas-Dias, J. M., & Figueiredo, M. A. T. (2010). Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19(9), 2345–2356.

    Article  Google Scholar 

  • Baydar, N., & Ball, A. (2001). A comparative study of acoustic and vibration signals in detection of gear failures using Wigner–Ville distribution. Mechanical Systems and Signal Processing, 15(6), 1091–1107.

    Article  Google Scholar 

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373–1396.

    Article  Google Scholar 

  • Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2015). Health assessment and life prediction of cutting tools based on support vector regression. Journal of Intelligent Manufacturing, 26(2), 213–223.

    Article  Google Scholar 

  • Bobin, J., Moudden, Y., Starck, J. L., & Elad, M. (2008). Morphological diversity and source separation. IEEE Signal Processing Letters, 13(7), 409–412.

    Article  Google Scholar 

  • Bobin, J., Starck, J. L., Fadili, J. M., Moudden, Y., & Donoho, D. L. (2007). Morphological component analysis: An adaptive thresholding strategy. IEEE Transactions on Image Processing, 16(11), 2675–2681.

    Article  Google Scholar 

  • Cai, G. G., Chen, X. F., & He, Z. J. (2013). Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox. Mechanical Systems and Signal Processing, 41(1–2), 34–53.

    Article  Google Scholar 

  • Cao, L. Y. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 110(1–2), 43–50.

    Article  Google Scholar 

  • Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5), 961–1005.

    Article  Google Scholar 

  • Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25(3), 473–487.

    Article  Google Scholar 

  • He, Q. B., Liu, Y. B., Long, Q., & Wang, J. (2012). Time-frequency manifold as a signature for machine health diagnosis. IEEE Transactions on Instrumentation and Measurement, 61(5), 1218–1230.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N., et al. (1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the royal society of London series a: Mathematical physical and engineering sciences (Vol. 454, No. 1971, pp. 903–995).

  • Huo, X., Ni, X. S., & Smith, A. K. (2007). A survey of manifold-based learning methods. In T. W. Liao & E. Triantaphyllo (Eds.), Recent advances in data mining of enterprise data.. Singapore: World Scientific.

  • Islam, M. M., Islam, M. N., Asari, V. K., & Karim, M. A. (2012). A new manifold learning technique for face recognition. In Wireless networks and computational intelligence, ICIP (Vol. 292, pp. 282–286).

  • Jakovljevic, Z., Petrovic, P. B., Mikovic, V. D., & Pajic, M. (2014). Fuzzy inference mechanism for recognition of contact states in intelligent robotic assembly. Journal of Intelligent Manufacturing, 25(3), 571–587.

    Article  Google Scholar 

  • Lei, Y. G., Lin, J., He, Z. J., & Zuo, M. J. (2013). A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 35(1–2), 108–126.

    Article  Google Scholar 

  • Li, H. K., Lian, X. T., Guo, C., & Zhao, P. S. (2015). Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination. Journal of Intelligent Manufacturing, 26(1), 189–198.

    Article  Google Scholar 

  • Liou, C. Y., & Cheng, W. C. (2008) Manifold training technique to reconstruct high dynamic range image. In Advances in Neural Networks—ISNN 2008, Pt 2, Proceedings 5 (Vol. 264, pp. 402–409).

  • Mao, Y. F., Qin, S. R., & Qin, Y. (2009). Demodulation based on harmonic wavelet and its application into rotary machinery fault diagnosis. Chinese Journal of Mechanical Engineering, 22(3), 419–425.

    Article  Google Scholar 

  • Mortada, M. A., Yacout, S., & Lakis, A. (2014). Fault diagnosis in power transformers using multi-class logical analysis of data. Journal of Intelligent Manufacturing, 25(6), 1429–1439.

    Article  Google Scholar 

  • Nelder, J. A., & Mead, R. (1965). A simplex-method for function minimization. Computer Journal, 7(4), 308–313.

    Article  Google Scholar 

  • Portnoff, M. R. (1980). Time-frequency representation of digital signals and systems based on short-time fourier-analysis. IEEE Transactions on Acoustics Speech and Signal Processing, 28(1), 55–69.

    Article  Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.

    Article  Google Scholar 

  • Selesnick, I. W. (2011). Resonance-based signal decomposition: A new sparsity-enabled signal analysis method. Signal Processing, 91(12), 2793–2809.

    Article  Google Scholar 

  • Selesnick, I. W. (2011). Wavelet transform with tunable Q-factor. IEEE Transactions on Signal Processing, 59(8), 3560–3575.

    Article  Google Scholar 

  • Sheen, Y. T., & Hung, C. K. (2004). Constructing a wavelet-based envelope function for vibration signal analysis. Mechanical Systems and Signal Processing, 18(1), 119–126.

    Article  Google Scholar 

  • Sun, S. L., Hussain, Z., & Shawe-Taylor, J. (2014). Manifold-preserving graph reduction for sparse semi-supervised learning. Neurocomputing, 124, 13–21.

    Article  Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. In Rand, D. A. & Young, L. S. (Eds.), Dynamical systems andturbulence. Lecture notes in mathematics (Vol. 898, pp. 366–381). Berlin: Springer-Verlag

  • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Tunc, B., & Gokmen, M. (2011). Manifold learning for face recognition under changing illumination. Telecommunication Systems, 47(3–4), 185–195.

  • Wang, J., & He, Q. B. (2014). Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery. Journal of Sound and Vibration, 333(11), 2450–2464.

    Article  Google Scholar 

  • Wang, J., He, Q. B., & Kong, F. R. (2013). Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis. Mechanical Systems and Signal Processing, 40(1), 237–256.

    Article  Google Scholar 

  • Weinberger, K. Q., & Saul, L. K. (2006). Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 70(1), 77–90.

    Article  Google Scholar 

  • Wells, L. J., Megahed, F. M., Niziolek, C. B., Camelio, J. A., & Woodall, W. H. (2013). Statistical process monitoring approach for high-density point clouds. Journal of Intelligent Manufacturing, 24(6), 1267–1279.

    Article  Google Scholar 

  • Yan, R. Q., & Gao, R. X. (2008). Rotary machine health diagnosis based on empirical mode decomposition. Journal of Vibration and Acoustics-Transactions of the Asme, 130(2), 1–12.

  • Yu, H. C., Lin, K. Y., & Chien, C. F. (2014). Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing. Journal of Intelligent Manufacturing, 25(5), 933–943.

    Article  Google Scholar 

  • Zhang, Z. Y., & Zha, H. Y. (2004). Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing, 26(1), 313–338.

    Article  Google Scholar 

  • Zhang, Z. Y., Wang, Y., & Wang, K. S. (2013). Fault diagnosis and prognosis using wavelet packet decomposition, fourier transform and artificial neural network. Journal of Intelligent Manufacturing, 24(6), 1213–1227.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2014CB049500 and the Key Technologies R&D Program of Anhui Province under Grant No. 1301021005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, M., Wang, C. & Zhu, C. Fault feature enhancement for rotating machinery based on quality factor analysis and manifold learning. J Intell Manuf 29, 463–480 (2018). https://doi.org/10.1007/s10845-015-1125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1125-6

Keywords

Navigation