Skip to main content
Log in

A Tree-form Constant Market Share Model for Growth Causes in International Trade Based on Multi-level Classification

  • Published:
Journal of Industry, Competition and Trade Aims and scope Submit manuscript

Abstract

This paper introduces a tree-form constant market share (CMS) model for analyzing growth causes in international trade based on multi-level classification. The tree-form CMS is a collection of CMS models at different levels, including the entire, branch- and leaf-models, which consists of a large amount of information and has a wide application spectrum. Basic properties of this model are investigated in detail. It is shown that the tree-form CMS model is superior to other CMS models in the literature. It is also shown that well known CMS formulations are special cases of a linear class with two parameters, which control how the interaction term is divided into the demand growth and competitive terms. Application to bilateral trade between China and Germany shows that the growth causes in different periods are clearly different. It is shown that the outputs of the tree-form CMS model can be used for further suitable statistical analysis. Furthermore, our theoretical findings are also confirmed by those data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batista JC (2008) Competition between Brail and other exporting countries in the US import market: a new extension of constant-market-shares analysis. Appl Econ 40:2477–2487

    Article  Google Scholar 

  • Beltramello A, De Backer K, Moussiegt L (2012) The export performance of countries within global value chains (GVCs), OECD Science, Technology and Industry Working Papers, No. 2012/02

  • Blien U, Wolf K (2002) Regional development of employment in eastern Germany: an analysis with an econometric analogue to shift-share techniques. Reg Sci 81:391–414

    Article  Google Scholar 

  • Chen K, Xu L, Duan YF (2000) Ex-post competitiveness of China’s export in agri-food products: 1980–96. Agribusiness 16:281–294

    Article  Google Scholar 

  • Cheptea A, Gaulier G, Zignago S (2005) World trade competitiveness: a disaggregated view by shift-share analysis, CEPII Working Paper, No. 2005-23

  • Creamer D (1943) Shifts of manufacturing industries in industrial location and national resources. Government Printing Office, Washington D. C.

  • Esteban J (2000) Regional convergence in Europe and the industry mix: a shift-share analysis. Reg Sci Urban Econ 30:353–364

    Article  Google Scholar 

  • Fagerberg J, Sollie G (1987) The method of constant market shares analysis reconsidered. Appl Econ 19:157–183

    Article  Google Scholar 

  • Fotopoulos G (2007) Integrating firm dynamics into the shift-share framework. Growth Change 38:140–152

    Article  Google Scholar 

  • Guo ZC, Feng YH, Tan XY (2011) Short- and long-term impact of remarkable economic events on the growth causes of China-Germany trade in agri-food products. Econ Model 28:2359–2368

    Article  Google Scholar 

  • Houston DB (1967) The shift-share analysis of regional growth: a critique. South Econ J 33:577–581

    Article  Google Scholar 

  • Jepma CJ (1986) Extensions and application possibilities of the constant market shares analysis: The case of the developing countries exports. University Press Groningen, Holland

    Google Scholar 

  • Jepma CJ (1989) Extensions of the constant-market-shares analysis with an application to long-term export data of developing countries. In: Williamson JG, Panchamukhi VR (eds) The balance between industry and agriculture in economic development. The Macmillan Press Ltd, London, pp 129–143

    Google Scholar 

  • Loveridge S, Selting AC (1998) A review and comparison of shift-share identities. Int Reg Sci Rev 21:37–58

    Article  Google Scholar 

  • Lu WC, Mei Y (2007) The causes of China-EU agricultural trade growth: based on the empirical analysis of the CMS model. Issues Agric Econ 12:15–19

    Google Scholar 

  • Marini G (2010) An application of constant market share analysis for the study of firm profitability, MPRA Paper, No. 25814

  • Mazzanti M, Montini A (2009) Regional and sector environmental efficiency empirical evidence from structural shift-share analysis of NAMEA data, Fondazione Eni Enrico Mattei Working Papers, November 2009

  • Memedovic O, Iapadre L (2010) Industrial development and the dynamics of international specialization patterns, UNIDO, Research and Statistics Branch Working Paper 23/2009

  • Merkies AHQM, van der Meer T (1988) A theoretical foundation for constant market shares analysis. Empir Econ 13:65–80

    Article  Google Scholar 

  • Milana C (1988) Constant-market-shares analysis and index number theory. Eur J Polit Econ 4:453–478

    Article  Google Scholar 

  • Patterson MG (1991) A note on the formulation of a full-analogue regression model of the shift-share method. J Reg Sci 31:211–216

    Article  Google Scholar 

  • Richardson JD (1971a) Constant market shares analysis of export growth. J Int Econ 1:227–239

    Article  Google Scholar 

  • Richardson JD (1971b) Some sensitivity tests for a constant market shares analysis of export growth. Rev Econ Stat 53:300–304

    Article  Google Scholar 

  • Simonis D (2000) Belgium’s export performance: a constant market shares analysis, Federal Planning Bureau, WP 2-00

  • Sirakaya E, Uysal M, Toepper L (1995) Measuring tourism performance using a shift-share analysis: the case of South Carolina. J Travel Res 34:55–61

    Article  Google Scholar 

  • Stevens BH, Moore CL (1980) A critical review of the literature on shift-share as a forecasting technique. J Reg Sci 20:419–437

    Article  Google Scholar 

  • Sun JW (1998) Changes in energy consumption and energy intensity: a complete decomposition model. Energy Econ 20:85–100

    Article  Google Scholar 

  • Toh RS, Khan H, Lim LL (2004) Two-stage shift-share analyses of tourism arrivals and arrivals by purpose of visit: the Singapore experience. J Travel Res 8:57–66

    Article  Google Scholar 

  • Tyszynski H (1951) World trade in manufactured commodities, 1899–1950. Manch Sch 19:272–304

    Article  Google Scholar 

  • Zhang ZX (2003) Why did the energy intensity fall in China’s industrial sector in the 1990s? The relative importance of structural change and intensity change. Energy Econ 25:625–638

    Article  Google Scholar 

Download references

Acknowledgments

The paper was finished when the second author worked as a research assistant on a cooperative research project between the University of Paderborn and the China Agricultural University. We are grateful to the financial support of the Faculty of Business Administration and Economics, University of Paderborn, Germany. We would like to thank to the Editor and two referees for their useful comments and suggestions, which helped to improve the quality of the paper clearly. The data used are downloaded from the website of the UN Comtrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhua Feng.

Appendix: Proofs of the results

Appendix: Proofs of the results

1.1 Proof of Theorem 1

  1. Case 1:
    1. a)

      Since \( s_1^0=s_2^0=\ldots =s_n^0 \), we have \( {s^0}=s_1^0 \). This results in

      $$ \begin{array}{*{20}c} {E_1^D=\sum\limits_i {s_i^0\varDelta {Q_i}-{s^0}\varDelta Q=s_1^0\varDelta {Q_1}+s_2^0\varDelta {Q_2}+\ldots +s_n^0\varDelta {Q_n}-{s^0}\varDelta Q} } \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^0\varDelta {Q_1}+s_1^0\varDelta {Q_2}+\ldots +s_1^0\varDelta {Q_n}-s_1^0\varDelta Q} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^0\left( {\varDelta {Q_1}+\varDelta {Q_2}+\ldots +\varDelta {Q_n}} \right)-s_1^0\varDelta Q} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^0\varDelta Q-s_1^0\varDelta Q=0.} \hfill \\ \end{array} $$
    2. b)

      Since \( s_1^1=s_2^1=\ldots =s_n^1 \), we have \( {s^1}=s_1^1 \). This results in

      $$ \begin{array}{*{20}c} {E_1^C=\sum\limits_i {\varDelta {s_i}Q_i^0-\varDelta s{Q^0}=\left( {s_1^1-s_1^0} \right)Q_1^0+\left( {s_2^1-s_2^0} \right)Q_2^0+\ldots +\left( {s_n^1-s_n^0} \right)Q_n^0-\left( {{s^1}-{s^0}} \right){Q^0}} } \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^1Q_1^0-s_1^0Q_1^0+s_2^1Q_2^0-s_2^0Q_2^0+\ldots +s_n^1Q_n^0-s_n^0Q_n^0-{s^1}{Q^0}+{s^0}{Q^0}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^1Q_1^0+s_1^1Q_2^0+\ldots +s_1^1Q_n^0-s_1^1{Q^0}-q_1^0-q_2^0-\ldots -q_n^0+{q^0}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^1\left( {Q_1^0+Q_2^0+\ldots +Q_n^0} \right)-s_1^1{Q^0}-{q^0}+{q^0}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad =s_1^1{Q^0}-s_1^1{Q^0}=0.} \hfill \\ \end{array} $$
    3. c)

      Under the conditions of a) and b), we have \( E_1^D=0 \) and \( E_1^C=0 \).

      Hence \( E_1^I=0 \), because \( E_1^D + E_1^C+E_1^I=0. \)

  1. Case 2:

    Since \( Q_1^0:Q_2^0:\ldots :Q_n^0=Q_1^1:Q_2^1:\ldots :Q_n^1=1:{C_2}:\ldots :{C_n} \), we have

    $$ \begin{array}{*{20}c} {\sum\limits_i {s_i^0} \varDelta {Q_i}=s_1^0\varDelta {Q_1}+s_2^0\varDelta {Q_2}+\ldots +s_n^0\varDelta {Q_n}=s_1^0\left( {Q_1^1-Q_1^0} \right)+s_2^0\left( {Q_2^1-Q_2^0} \right)+\ldots +s_n^0\left( {Q_n^1-Q_n^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = s_1^0\left( {Q_1^1-Q_1^0} \right)+s_2^0\left( {{C_2}Q_1^1-{C_2}Q_1^0} \right)+\ldots +s_n^0\left( {{C_n}Q_1^1-{C_n}Q_1^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = s_1^0\left( {Q_1^1-Q_1^0} \right)+{C_2}s_2^0\left( {Q_1^1-Q_1^0} \right)+\ldots +{C_n}s_n^0\left( {Q_1^1-Q_1^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \left( {Q_1^1-Q_1^0} \right)\left( {s_1^0+{C_2}s_2^0+\ldots +{C_n}s_n^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \left( {Q_1^1-Q_1^0} \right)\left( {\frac{{q_1^0}}{{Q_1^0}}+{C_2}\frac{{q_2^0}}{{Q_2^0}}+\ldots +{C_n}\frac{{q_n^0}}{{Q_n^0}}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \left( {Q_1^1-Q_1^0} \right)\left( {\frac{{q_1^0}}{{Q_1^0}}+{C_2}\frac{{q_2^0}}{{{C_2}Q_1^0}}+\ldots +{C_n}\frac{{q_n^0}}{{{C_n}Q_1^0}}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \left( {Q_1^1-Q_1^0} \right)\left( {\frac{{q_1^0+q_2^0+\ldots +q_n^0}}{{Q_1^0}}} \right)=\left( {Q_1^1-Q_1^0} \right)\frac{{{q^0}}}{{{Q^0}}}\frac{{{Q^0}}}{{Q_1^0}}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = {s^0}\left( {Q_1^1-Q_1^0} \right)\frac{{Q_1^0+Q_2^0+\ldots +Q_n^0}}{{Q_1^0}}} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = {s^0}\left( {Q_1^1-Q_1^0} \right)\left( {1+{C_2}+\ldots +{C_n}} \right).} \hfill \\ \end{array} $$
    $$ \begin{array}{*{20}c} {\mathrm{And}\quad {s^0}\varDelta Q={s^0}\left( {{Q^1}-{Q^0}} \right)={s^0}\left( {Q_1^1+Q_2^1+\ldots +Q_n^1-Q_1^0-Q_2^0-\ldots -Q_n^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = {s^0}\left[ {\left( {Q_1^1-Q_1^0} \right)+\left( {Q_2^1-Q_2^0} \right)+\ldots +\left( {Q_n^1-Q_n^0} \right)} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = {s^0}\left[ {\left( {Q_1^1-Q_1^0} \right)+{C_2}\left( {Q_1^1-Q_1^0} \right)+\ldots +{C_n}\left( {Q_1^1-Q_1^0} \right)} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = {s^0}\left( {Q_1^1-Q_1^0} \right)\left( {1+{C_2}+\ldots +{C_n}} \right).} \hfill \\ \end{array} $$

    Hence \( E_1^D=\sum\limits_i {s_i^0\varDelta {Q_i}} -{s^0}\varDelta Q=0. \)

    $$ \begin{array}{*{20}c} {\mathrm{Furthermore},\quad \sum\limits_i {\varDelta {s_i}Q_i^0} =\varDelta {s_1}Q_1^0+\varDelta {s_2}Q_2^0+\ldots +\varDelta {s_n}Q_n^0} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = \varDelta {s_1}Q_1^0+\varDelta {s_2}{C_2}Q_1^0+\ldots +\varDelta {s_n}{C_n}Q_1^0} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left( {\varDelta {s_1}+{C_2}\varDelta {s_2}+\ldots +{C_n}\varDelta {s_n}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left[ {\left( {\frac{{q_1^1}}{{Q_1^1}}-\frac{{q_1^0}}{{Q_1^0}}} \right)+{C_2}\left( {\frac{{q_2^1}}{{Q_2^1}}-\frac{{q_2^0}}{{Q_2^0}}} \right)+\ldots +{C_n}\left( {\frac{{q_n^1}}{{Q_n^1}}-\frac{{q_n^0}}{{Q_n^0}}} \right)} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left[ {\left( {\frac{{q_1^1}}{{Q_1^1}}-\frac{{q_1^0}}{{Q_1^0}}} \right)+{C_2}\left( {\frac{{q_2^1}}{{{C_2}Q_1^1}}-\frac{{q_2^0}}{{{C_2}Q_1^0}}} \right)+\ldots +{C_n}\left( {\frac{{q_n^1}}{{{C_n}Q_1^1}}-\frac{{q_n^0}}{{{C_n}Q_1^0}}} \right)} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left[ {\left( {\frac{{q_1^1}}{{Q_1^1}}+\frac{{q_2^1}}{{Q_1^1}}+\ldots +\frac{{q_n^1}}{{Q_1^1}}} \right)-\left( {\frac{{q_1^0}}{{Q_1^0}}+\frac{{q_2^0}}{{Q_1^0}}+\ldots +\frac{{q_n^0}}{{Q_1^0}}} \right)} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left( {\frac{{{q^1}}}{{Q_1^1}}-\frac{{{q^0}}}{{Q_1^0}}} \right)=Q_1^0\left( {\frac{{{q^1}}}{{{Q^1}}}\frac{{{Q^1}}}{{Q_1^1}}-\frac{{{q^0}}}{{{Q^0}}}\frac{{{Q^0}}}{{Q_1^0}}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left( {\frac{{{q^1}}}{{{Q^1}}}\frac{{Q_1^1+Q_2^1+\ldots +Q_n^1}}{{Q_1^1}}-\frac{{{q^0}}}{{{Q^0}}}\frac{{Q_1^0+Q_2^0+\ldots +Q_n^0}}{{Q_1^0}}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left( {\frac{{{q^1}}}{{{Q^1}}}\frac{{Q_1^1+{C_2}Q_1^1+\ldots +{C_n}Q_1^1}}{{Q_1^1}}-\frac{{{q^0}}}{{{Q^0}}}\frac{{Q_1^0+{C_2}Q_1^0+\ldots +{C_n}Q_1^0}}{{Q_1^0}}} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left[ {\frac{{{q^1}}}{{{Q^1}}}\frac{{Q_1^1\left( {1+{C_2}+\ldots +{C_n}} \right)}}{{Q_1^1}}-\frac{{{q^0}}}{{{Q^0}}}\frac{{Q_1^0\left( {1+{C_2}+\ldots +{C_n}} \right)}}{{Q_1^0}}} \right]} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad = Q_1^0\left( {1+{C_2}+\ldots +{C_n}} \right)\left( {\frac{{{q^1}}}{{{Q^1}}}-\frac{{{q^0}}}{{{Q^0}}}} \right),} \hfill \\ \end{array} $$
    $$ \begin{array}{*{20}c} {\mathrm{and}\quad \varDelta s{Q^0}=\left( {\frac{{{q^1}}}{{{Q^1}}}-\frac{{{q^0}}}{{{Q^0}}}} \right)\left( {Q_1^0+Q_2^0+\ldots +Q_n^0} \right)=\left( {\frac{{{q^1}}}{{{Q^1}}}-\frac{{{q^0}}}{{{Q^0}}}} \right)\left( {Q_1^0+{C_2}Q_1^0+\ldots +{C_n}Q_1^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =Q_1^0\left( {1+{C_2}+\ldots +{C_n}} \right)\left( {\frac{{{q^1}}}{{{Q^1}}}-\frac{{{q^0}}}{{{Q^0}}}} \right).} \hfill \\ \end{array} $$

    Hence \( E_1^C=\sum\limits_i {\varDelta {s_i}} Q_i^0-\varDelta s{Q^0}=0. \)

    Finally we have \( E_1^I=0 \), because \( E_1^D+E_1^C+E_1^I=0. \)

1.2 Proof of Corollary 1

  1. a)

    When n = 2, we have

    $$ \begin{array}{*{20}c} {E_1^D=s_1^0\varDelta Q{}_1+s_2^0\varDelta Q{}_2-{s^0}\varDelta Q=\frac{{q_1^0}}{{Q_1^0}}\left( {Q_1^1-Q_1^0} \right)+\frac{{q_2^0}}{{Q_2^0}}\left( {Q_2^1-Q_2^0} \right)-\frac{{q_1^0+q_2^0}}{{Q_1^0+Q_2^0}}\left( {Q_1^1+Q_2^1-Q_1^0-Q_2^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac{{Q_1^1}}{{Q_1^0}}q_1^0-\frac{{Q_1^1+Q_2^1}}{{Q_1^0+Q_2^0}}q_1^0-\frac{{Q_1^1+Q_2^1}}{{Q_1^0+Q_2^0}}q_2^0+\frac{{Q_2^1}}{{Q_2^0}}q_2^0} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac{{Q_1^1Q_2^0-Q_1^0Q_2^1}}{{Q_1^0}}q_1^0-\frac{{Q_1^1Q_2^0-Q_1^0Q_2^1}}{{Q_2^0}}q_2^0} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\left( {Q_1^0Q_2^1-Q_1^1Q_2^0} \right)\left( {s_2^0-s_1^0} \right).} \hfill \\ \end{array} $$

    Hence \( E_1^D \) is positive (zero or negative), iff \( \left( {Q_1^0Q_2^1-Q_1^1Q_2^0} \right)\left( {s_1^0-s_2^0} \right)<0\left( {=0\,\mathrm{or} > 0} \right). \)

  2. b)

    Furthermore, we have

    $$ \begin{array}{*{20}c} {E_1^C=\varDelta {s_1}Q_1^0+\varDelta {s_2}Q_2^0-\varDelta s{Q^0}=\left( {\frac{{q_1^1}}{{Q_1^1}}-\frac{{q_1^0}}{{Q_1^0}}} \right)Q_1^0+\left( {\frac{{q_2^1}}{{Q_2^1}}-\frac{{q_2^0}}{{Q_2^0}}} \right)Q_2^0-\left( {\frac{{q_1^1+q_2^1}}{{Q_1^1+Q_2^1}}-\frac{{q_1^0+q_2^0}}{{Q_1^0+Q_2^0}}} \right)\left( {Q_1^0+Q_2^0} \right)} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac{{Q_1^0}}{{Q_1^1}}q{}_1^1-\frac{{Q_1^0+Q_2^0}}{{Q_1^1+Q_2^1}}q_1^1-\frac{{Q_1^0+Q_2^0}}{{Q_1^1+Q_2^1}}q_2^1+\frac{{Q_2^0}}{{Q_2^1}}q{}_2^1} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_1^1}}q_1^1-\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_2^1}}q{}_2^1} \hfill \\ {\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad = \left( {Q_1^0Q_2^1-Q_1^1Q_2^0} \right)\left( {s_1^1-s_2^1} \right).} \hfill \\ \end{array} $$

    Hence \( E_1^C \) is positive (zero or negative), iff \( \left( {Q_1^0Q_2^1-Q_1^1Q_2^0} \right)\left( {s_1^1-s_2^1} \right)>0\left( {=0\,or < 0} \right) \).

  3. c)

    For \( E_1^I \), we have

    $$ \begin{array}{*{20}c} {E_1^I=\varDelta {s_1}\varDelta {Q_1}+\varDelta {s_2}\varDelta {Q_2}-\varDelta s\varDelta Q} \\ {=\left( {\frac{{q_1^1}}{{Q_1^1}}-\frac{{q_1^0}}{{Q_1^0}}} \right)\left( {Q_1^1-Q_1^0} \right)+\left( {\frac{{q_2^1}}{{Q_2^1}}-\frac{{q_2^0}}{{Q_2^0}}} \right)\left( {Q_2^1-Q_2^0} \right)-\left( {\frac{{q_1^1+q_2^1}}{{Q_1^1+Q_2^1}}-\frac{{q_1^0+q_2^0}}{{Q_1^0+Q_2^0}}} \right)\left( {Q_1^1+Q_2^1-Q_1^0-Q_2^0} \right)} \\ {=\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_1^0\left( {Q_1^0+Q_2^0} \right)}}q_1^0-\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_2^0\left( {Q_1^0+Q_2^0} \right)}}q_2^0-\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_1^1\left( {Q_1^1+Q_2^1} \right)}}q_1^1+\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{Q_2^1\left( {Q_1^1+Q_2^1} \right)}}q_2^1} \\ {=\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{{Q^0}}}\left( {s_1^0-s_2^0} \right)-\frac{{Q_1^0Q_2^1-Q_1^1Q_2^0}}{{{Q^1}}}\left( {s_1^1-s_2^1} \right).} \\ \end{array} $$

    \( E_1^I \) is positive (zero or negative), iff \( \left( {Q_1^0Q_2^1-Q_1^1Q_2^0} \right)\left[ {\left( {s_1^0-s_2^0} \right){Q^1}-\left( {s_1^1-s_2^1} \right){Q^0}} \right]>0\left( {=0\,or < 0} \right) \).

  4. d)

    It is clear the terms \( E_1^D \), \( E_1^C \) and \( E_1^I \) all vanish, if \( Q_1^0Q_2^1=Q_1^1Q_2^0 \) or \( s_1^0=s_2^0 \) and \( s_1^1=s_2^1 \). On the other hand, if \( Q_1^0Q_2^1\ne Q_1^1Q_2^0 \) and \( s_1^0\ne s_2^0 \) or \( s_1^1\ne s_2^1 \) at least one of \( E_1^D \) and \( E_1^C \) is non-zero. This finishes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Guo, Z. & Peitz, C. A Tree-form Constant Market Share Model for Growth Causes in International Trade Based on Multi-level Classification. J Ind Compet Trade 14, 207–228 (2014). https://doi.org/10.1007/s10842-013-0156-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10842-013-0156-y

Keywords

JEL classification

Navigation