Skip to main content

Advertisement

Log in

Effects of low-level carotid baroreflex stimulation on atrial electrophysiology

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the effects of low-level carotid baroreflex stimulation (LL-CBS) on atrial electrophysiology.

Methods

In protocol 1 (LL-CBS on physiological state), anesthetized rabbits were subjected to LL-CBS (n = 10) or surgical exposure (n = 6) for 1 h. In protocol 2 (LL-CBS on acute rapid atrial pacing), anesthetized rabbits underwent 3 h of rapid atrial pacing (RAP) with concomitant LL-CBS in the third hour (n = 7) or 3h-RAP without LL-CBS (n = 6). Carotid baroreceptor surrounded by electrodes allowed LL-CBS at 20 % below the voltage required to reduce systolic blood pressure or heart rate. Effective refractory period (ERP) and monophasic action potential duration (MAPD) were determined, and power spectral of heart rate variability (HRV) was analyzed at baseline as well as after interventions in all groups, respectively.

Results

In protocol 1, LL-CBS significantly prolonged the ERPs, MAPD90, and MAPD50 and increased high-frequency (HF) HRV component but it decreased low-frequency (LF) HRV component and LF/HF ratio. In protocol 2, 3h-RAP significantly shortened ERPs, MAPD90, and MAPD50 and decreased HF but it increased LF and LF/HF ratio. However, LL-CBS reversed the variations caused by RAP.

Conclusions

LL-CBS prolongs ERPs and MAPD of the left atrium and attenuates RAP-induced atrial electrical remodeling including the shortening of ERPs and MAPD, probably by modulating the autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

CBS:

Carotid baroreflex stimulation

ERP:

Effective refractory period

HRV:

Heart rate variability

HF:

High frequency

LA:

Left atria

LAA:

Left atria appendage

LF:

Low frequency

LL-CBS:

Low-level carotid baroreflex stimulation

MAPD:

Monophasic action potential Duration

RAP:

Rapid atrial pacing

LL-VNS:

Low-level vagus nerve stimulation

References

  1. Illig, K. A., Levy, M., Sanchez, L., Trachiotis, G. D., Shanley, C., Irwin, E., et al. (2006). An implantable carotid sinus stimulator for drug-resistant hypertension: surgical technique and short-term outcome from the multicenter phase II Rheos feasibility trial. Journal of Vascular Surgery, 44(6), 1213–1218.

    Article  PubMed  Google Scholar 

  2. Scheffers, I. J., Kroon, A. A., Tordoir, J. H., & de Leeuw, P. W. (2008). Rheos baroreflex hypertension therapy system to treat resistant hypertension. Expert Review of Medical Devices, 5(1), 33–39.

    Article  PubMed  Google Scholar 

  3. Joshi, N., Taylor, J., & Bisognano, J. D. (2009). Implantable device therapy for the treatment of resistant hypertension. Journal of Cardiovascular Translational Research, 2(2), 150–153.

    Article  PubMed  Google Scholar 

  4. Scheffers, I. J., Kroon, A. A., & Schmidli, J. (2010). Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. Journal of the American College of Cardiology, 56(15), 1254–1258.

    Article  PubMed  Google Scholar 

  5. Bisognano, J. D., Kaufman, C. L., Bach, D. S., Lovett, E. G., de Leeuw, P., & DEBuT-HT and Rheos Feasibility Trial Investigators. (2011). Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. Journal of the American College of Cardiology, 57(17), 1787–1788.

    Article  PubMed  Google Scholar 

  6. Lohmeier, T. E., & Iliescu, R. (2011). Chronic lowering of blood pressure by carotid baroreflex activation: mechanisms and potential for hypertension therapy. Hypertension, 57(5), 880–886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hoff, H. E., & Geddes, L. A. (1955). Cholinergic factor in auricular fibrillation. Journal of Applied Physiology, 8(2), 177–192.

    CAS  PubMed  Google Scholar 

  8. Nattel, S., Burstein, B., & Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circulation. Arrhythmia and Electrophysiology, 1, 62–73.

    Article  PubMed  Google Scholar 

  9. Shen, M. J., Shinohara, T., Park, H. W., Frick, K., Ice, D. S., Choi, E. K., et al. (2011). Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation, 123(20), 2204–2212.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zipes, D. P., Mihalick, M. J., & Robbins, G. T. (1974). Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovascular Research, 8(5), 647–655.

    Article  CAS  PubMed  Google Scholar 

  11. Sheng, X., Scherlag, B. J., Yu, L., Li, S., Ali, R., Zhang, Y., et al. (2011). Prevention and reversal of atrial fibrillation inducibility and autonomic remodeling by low-level vagosympathetic nerve stimulation. Journal of the American College of Cardiology, 57(5), 563–571.

    Article  PubMed  Google Scholar 

  12. Linz, D., Mahfoud, F., Schotten, U., Ukena, C., Neuberger, H. R., Wirth, K., et al. (2013). Effects of electrical stimulation of carotid baroreflex and renal denervation on atrial electrophysiology. Journal of Cardiovascular Electrophysiology, 24(9), 1028–1033.

    Article  PubMed  Google Scholar 

  13. Lu, Z., Cui, B., He, B., Hu, X., Wu, W., Wu, L., et al. (2011). Distinct restitution properties in vagally mediated atrial fibrillation and six-hour rapid pacing-induced atrial fibrillation. Cardiovascular Research, 89(4), 834–842.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, L., Scherlag, B. J., Sha, Y., Li, S., Sharma, T., Nakagawa, H., et al. (2012). Interactions between atrial electrical remodeling and autonomic remodeling: how to break the vicious cycle. Heart Rhythm, 9(5), 804–809.

    Article  PubMed  Google Scholar 

  15. Berkowitz, W. D., Scherlag, B. J., Stein, E., & Damato, A. N. (1969). Relative roles of sympathetic and parasympathetic nervous systems in the carotid sinus reflex in dogs. Circulation Research, 24(3), 447–455.

    Article  CAS  PubMed  Google Scholar 

  16. Alnima, T., de Leeuw, P. W., & Kroon, A. A. (2012). Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiology Research and Practice, 2012, 587194.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Tordoir, J. H., Scheffers, I., Schmidli, J., Savolainen, H., Liebeskind, U., Hansky, B., et al. (2007). An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. European Journal of Vascular and Endovascular Surgery, 33(4), 414–421.

    Article  CAS  PubMed  Google Scholar 

  18. Toorop, R. J., Ousrout, R., Scheltinga, M. R., Moll, F. L., & Bleys, R. L. (2013). Carotid baroreceptors are mainly localized in the medial portions of the proximal internal carotid artery. Annals of Anatomy, 195(3), 248–252.

    Article  PubMed  Google Scholar 

  19. Li, S., Scherlag, B. J., Yu, L., Sheng, X., Zhang, Y., Ali, R., et al. (2009). Low-level vagosympathetic stimulation: a paradox and potential new modality for the treatment of focal atrial fibrillation. Circulation. Arrhythmia and Electrophysiology, 2(6), 645–651.

    Article  PubMed  Google Scholar 

  20. Yu, J., Li, W., Li, Y., Zhao, J., Wang, L., Dong, D., et al. (2011). Activation of β(3)-adrenoceptor promotes rapid pacing-induced atrial electrical remodeling in rabbits. Cellular Physiology and Biochemistry, 28(1), 87–96.

    Article  CAS  PubMed  Google Scholar 

  21. Scherlag, B. J., Hou, Y. L., Lin, J., Lu, Z., Zacharias, S., Dasari, T., et al. (2008). An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. Journal of Cardiovascular Electrophysiology, 19(5), 519–527.

    Article  PubMed  Google Scholar 

  22. Franz, M. R. (1999). Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovascular Research, 41(1), 25–40.

    Article  CAS  PubMed  Google Scholar 

  23. Franz, M. R. (1983). Long-term recording of monophasic action potentials from human endocardium. American Journal of Cardiology, 51(10), 1629–1634.

    Article  CAS  PubMed  Google Scholar 

  24. Banville, I., Chattipakorn, N., & Gray, R. A. (2004). Restitution dynamics during pacing and arrhythmias in isolated pig hearts. Journal of Cardiovascular Electrophysiology, 15(4), 455–463.

    Article  PubMed  Google Scholar 

  25. Heart rate variability: standards of measurement, physiological interpretation and clinical use. (1996). Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 93(5), 1043–1065.

  26. Lohmeier, T. E., Iliescu, R., Dwyer, T. M., Irwin, E. D., et al. (2010). Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. American Journal of Physiology - Heart and Circulatory Physiology, 299(2), H402–H409.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Iliescu, R., Tudorancea, I., & Lohmeier, T. E. (2014). Baroreflex activation: from mechanisms to therapy for cardiovascular disease. Current Hypertension Reports, 16(8), 453.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J., & Kieval, R. S. (2004). Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43(2), 306–311.

    Article  CAS  PubMed  Google Scholar 

  29. Heusser, K., Tank, J., Engeli, S., Diedrich, A., Menne, J., Eckert, S., et al. (2010). Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension, 55(3), 619–626.

    Article  CAS  PubMed  Google Scholar 

  30. Iliescu, R., Tudorancea, I., Irwin, E. D., & Lohmeier, T. E. (2013). Chronic baroreflex activation restores spontaneous baroreflex control and variability of heart rate in obesity-induced hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 305(7), H1080–H1088.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shen, M. J., Choi, E. K., Tan, A. Y., Lin, S. F., Fishbein, M. C., Chen, L. S., et al. (2012). Neural mechanisms of atrial arrhythmias. Current Opinion in Cardiology, 27(1), 24–28.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chang, H. Y., Lo, L. W., Lin, Y. J., Lee, S. H., Chiou, C. W., & Chen, S. A. (2014). Relationship between intrinsic cardiac autonomic ganglionated plexi and the atrial fibrillation nest. Circulation Journal, 78(4), 922–928.

    Article  PubMed  Google Scholar 

  33. Linz, D., Ukena, C., Mahfoud, F., Neuberger, H. R., & Bohm, M. (2014). Atrial autonomic innervation: a target for interventional antiarrhythmic therapy? Journal of the American College of Cardiology, 63(3), 215–224.

    Article  PubMed  Google Scholar 

  34. Allessie, M. A., Boyden, P. A., Camm, A. J., Kléber, A. G., Lab, M. J., Legato, M. J., et al. (2001). Pathophysiology and prevention of atrial fibrillation. Circulation, 103(5), 769–777.

    Article  CAS  PubMed  Google Scholar 

  35. Iwasaki, Y. K., Nishida, K., Kato, T., & Nattel, S. (2011). Atrial fibrillation pathophysiology: implications for management. Circulation, 124(20), 2264–2274.

    Article  CAS  PubMed  Google Scholar 

  36. Iijima, K., Chinushi, M., Izumi, D., Ahara, S., Furushima, H., Komura, S., et al. (2010). Effect of bepridil in atrial fibrillation inducibility facilitated by vagal nerve stimulation. Prevention of vagal nerve activation-induced shortening of the atrial action potential duration. Circulation Journal, 74(5), 895–902.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, L., Scherlag, B. J., Li, S., Sheng, X., Lu, Z., Nakagawa, H., et al. (2011). Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility: direct evidence by neural recordings from intrinsic cardiac ganglia. Journal of Cardiovascular Electrophysiology, 22(4), 455–463.

    Article  PubMed  Google Scholar 

  38. Yu, L., Scherlag, B. J., Li, S., Fan, Y., Dyer, J., Male, S., et al. (2013). Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm, 10(3), 428–435.

    Article  PubMed  Google Scholar 

  39. Nakashima, H., Kumagai, K., Urata, H., Gondo, N., Ideishi, M., & Arakawa, K. (2000). Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation, 101(22), 2612–2617.

    Article  CAS  PubMed  Google Scholar 

  40. Workman, A. J., Kane, K. A., Russell, J. A., Norrie, J., & Rankin, A. C. (2003). Chronic beta-adrenoceptor blockade and human atrial cell electrophysiology: evidence of pharmacological remodelling. Cardiovascular Research, 58(3), 518–525.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, Q., Yu, S., Zou, M., Dai, Z., Wang, X., Xiao, J., et al. (2012). Effect of renal sympathetic denervation on the inducibility of atrial fibrillation during rapid atrial pacing. Journal of Interventional Cardiac Electrophysiology, 35(2), 119–125.

    Article  PubMed  Google Scholar 

  42. Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control. Science, 213, 220–222.

    Article  CAS  PubMed  Google Scholar 

  43. Pomeranz, M., Macaulay, R. J. B., Caudill, M. A., Kutz, I., Adam, D., & Gordon, D. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology, 248, H151–H153.

    CAS  PubMed  Google Scholar 

  44. Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84, 1482–1492.

    Article  Google Scholar 

  45. Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96(12), 1255–1261.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., et al. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546–552.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Liao, K., Yu, L., Yang, K., Saren, G., Wang, S., Huang, B., & Jiang, H. (2014). Low-level carotid baroreceptor stimulation suppresses ventricular arrhythmias during acute ischemia. PLoS One, 9(10), e109313.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Stavrakis, S., Scherlag, B. J., Fan, Y., Liu, Y., Mao, J., Varma, V., et al. (2013). Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway. Journal of Interventional Cardiac Electrophysiology, 36(3), 199–208.

    Article  PubMed  Google Scholar 

  49. Todoran, T. M., & Zile, M. R. (2013). Neuromodulation device therapy for treatment of hypertensive heart disease. Circulation Journal, 77(6), 1351–1363.

    Article  PubMed  Google Scholar 

  50. Hoppe, U. C., Brandt, M. C., Wachter, R., Beige, J., Rump, L. C., Kroon, A. A., et al. (2012). Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. Journal of the American Society of Hypertension, 6(4), 270–276.

    Article  PubMed  Google Scholar 

  51. Tai, C. T., Chiou, C. W., Wen, Z. C., Hsieh, M. H., Tsai, C. F., Lin, W. S., et al. (2000). Effect of phenylephrine on focal atrial fibrillation originating in the pulmonary veins and superior vena cava. Journal of the American College of Cardiology, 36(3), 788–793.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None

Funding

This work is funded by the National Science and Technology Pillar Program of China No. 2011BAI11B12, the Major Original Works Nurturing Program of Wuhan University, and the Planning Project of Innovation and Entrepreneurship Training of National Undergraduate of Wuhan University No. 201310486087

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Huang.

Additional information

Mingyan Dai and Mingwei Bao are first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Bao, M., Liao, J. et al. Effects of low-level carotid baroreflex stimulation on atrial electrophysiology. J Interv Card Electrophysiol 43, 111–119 (2015). https://doi.org/10.1007/s10840-015-9976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-015-9976-5

Keywords

Navigation