Skip to main content
Log in

Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: Structure and piezoelectric properties

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lead-free perovskite (0.995–x)(K0.5Na0.5)NbO3x(Bi0.5Li0.5)ZrO3–0.005BiAlO3 ternary piezoelectric ceramics were projected and prepared by a conventional solid-state method. A research was conducted on the effects of (Bi0.5Li0.5)ZrO3 content on the structure and piezoelectric properties of the ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, a rhombohedral–orthorhombic–tetragonal phase coexistence was identified for the ceramics with 0.02 ≤ x ≤ 0.025, and a rhombohedral–tetragonal phase boundary was determined in the composition x = 0.03. Upon further increasing the (Bi0.5Li0.5)ZrO3 content, the rhombohedral–tetragonal phase boundary transformed to a single rhombohedral structure with x ≥ 0.035. An obviously improved piezoelectric activity was obtained for the ceramics with compositions in and around the rhombohedral–tetragonal phase boundary, among which the composition x = 0.025 exhibited the maximum values of piezoelectric constant d 33, and planar and thickness electromechanical coupling coefficients (k p and k t), of 252 pC/N, 0.366, and 0.466, respectively. In addition, the ceramic with x = 0.025 was found to possess a relatively high Curie temperature of 368 °C, suggesting it may have a prospect for applications at elevated ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 135–171

    Google Scholar 

  2. T. Takenaka, H. Nagata, J Eur Ceram Soc 25, 2693 (2005)

    Article  Google Scholar 

  3. J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem Rev 115, 2559 (2015)

    Article  Google Scholar 

  4. J.G. Wu, D.Q. Xiao, J.G. Zhu, J Mater Sci: Mater El 26, 9297 (2015)

    Google Scholar 

  5. Y. Chen, D.D. Xue, Z.Q. Chen, X.Q. Jiang, J. Gou, G. Liu, X.K. Liu, Z.P. Xu, Ceram Int 43, 634 (2017)

    Article  Google Scholar 

  6. K. Xu, J. Li, X. Lv, J.G. Wu, X.X. Zhang, D.Q. Xiao, J.G. Zhu, Adv Mater 28, 8519 (2016)

    Article  Google Scholar 

  7. Y. Chen, D.D. Xue, Y. Ma, K.H. Liu, Z.Q. Chen, X.Q. Jiang, Phys Lett A 380, 2974 (2016)

    Article  Google Scholar 

  8. Y. Chen, D.D. Xue, Y. Ma, Z.Q. Chen, X.Q. Jiang, G. Liu, X.K. Liu, Mater Res Bull 84, 240 (2016)

    Article  Google Scholar 

  9. K. Zhang, Y.P. Guo, D. Pan, H.N. Duan, Y.J. Chen, H. Li, H.Z. Liu, J Alloys Compd 664, 503 (2016)

    Article  Google Scholar 

  10. J. Xing, Z. Tan, L.M. Jiang, Q. Chen, J.G. Wu, W. Zhang, D.Q. Xiao, J.G. Zhu, J Appl Phys 119, 034101 (2016)

    Article  Google Scholar 

  11. F. Rubio-Marcos, R. López-Juárez, R.E. Rojas-Hernandez, A. del Campo, N. Razo-Pérez, J.F. Fernandez, ACS Appl Mater Interfaces 7, 23080 (2015)

    Article  Google Scholar 

  12. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Wang, X.J. Lou, J Mater Chem A 3, 1868 (2015)

    Article  Google Scholar 

  13. D.D. Mazhao, D.Q. Xiao, J.G. Wu, J.G. Zhu, J Mater Sci: Mater El 26, 7309 (2015)

    Google Scholar 

  14. C. Liu, D.Q. Xiao, T. Huang, J.G. Wu, F.X. Li, B. Wu, J.G. Zhu, Mater Lett 120, 275 (2014)

    Article  Google Scholar 

  15. X.P. Wang, J.G. Wu, D.Q. Xiao, J.G. Zhu, X.J. Cheng, T. Zheng, B.Y. Zhang, X.J. Lou, X.J. Wang, J Am Chem Soc 136, 2905 (2014)

    Article  Google Scholar 

  16. R.P. Wang, H. Bando, M. Kidate, Y. Nishihara, M. Itoh, Jpn J Appl Phys 50, 09ND10 (2011)

    Article  Google Scholar 

  17. R.Z. Zuo, J. Fu, D.Y. Lv, Y. Liu, J Am Ceram Soc 93, 2783 (2010)

    Article  Google Scholar 

  18. R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys Status Solidi (RRL) 3, 142 (2009)

    Article  Google Scholar 

  19. S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Solid State Commun 141, 675 (2007)

    Article  Google Scholar 

  20. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  21. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Scr Mater 94, 25 (2015)

    Article  Google Scholar 

  22. T. Zheng, J.G. Wu, X.J. Cheng, X.P. Wang, B.Y. Zhang, D.Q. Xiao, J.G. Zhu, X.J. Lou, X.J. Wang, Dalton Trans 43, 11759 (2014)

    Article  Google Scholar 

  23. R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu, L.T. Li, J Alloys Compd 476, 836 (2009)

    Article  Google Scholar 

  24. A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E. Takayama-Muromachi, Chem Mater 18, 133 (2006)

    Article  Google Scholar 

  25. P. Baettig, C.F. Schelle, R. Lesar, U.V. Waghmare, N.A. Spaldin, Chem Mater 17, 1376 (2005)

    Article  Google Scholar 

  26. X.J. Sun, J.M. Deng, L.J. Liu, S.S. Liu, D.P. Shi, L. Fang, B. Elouadi, Mater Res Bull 73, 437 (2016)

    Article  Google Scholar 

  27. J. Wang, X.M. Chen, X.M. Zhao, X.X. Liang, J.P. Zhou, P. Liu, Mater Res Bull 67, 94 (2015)

    Article  Google Scholar 

  28. X.L. Chao, J.J. Wang, L.L. Wei, R.N. Gou, Z.P. Yang, J Mater Sci: Mater El 26, 7331 (2015)

    Google Scholar 

  29. J.G. Hao, B. Shen, J.W. Zhai, H. Chen, J Am Ceram Soc 97, 1776 (2014)

    Article  Google Scholar 

  30. Y. Liu, R.Q. Chu, Z.J. Xu, Y.J. Zhang, Q. Chen, G.R. Li, Mater Sci Eng B 176, 1463 (2011)

    Article  Google Scholar 

  31. Y.P. Guo, K. Kakimoto, H. Ohsato, Appl Phys Lett 85, 4121 (2004)

    Article  Google Scholar 

  32. V.M. Goldschmidt, Die Naturwissenschaften 14, 477 (1926)

    Article  Google Scholar 

  33. L.Q. Cheng, K. Wang, F.Z. Yao, F.Y. Zhu, J.F. Li, J Am Ceram Soc 96, 2693 (2013)

    Article  Google Scholar 

  34. X. Lv, J.G. Wu, S. Yang, D.Q. Xiao, J.G. Zhu, ACS Appl Mater Interfaces 8, 18943 (2016)

    Article  Google Scholar 

  35. X.J. Cheng, J.G. Wu, X.P. Wang, B.Y. Zhang, X.J. Lou, X.J. Wang, D.Q. Xiao, J.G. Zhu, ACS Appl Mater Interfaces 5, 10409 (2013)

    Article  Google Scholar 

  36. M. Eriksson, H.X. Yan, G. Viola, H.P. Ning, D. Gruner, M. Nygren, M.J. Reece, Z.J. Shen, J Am Ceram Soc 94, 3391 (2011)

    Article  Google Scholar 

  37. M. Eriksson, H.X. Yan, M. Nygren, M.J. Reece, Z.J. Shen, J Mater Res 25, 240 (2010)

    Article  Google Scholar 

  38. X. Tang, T. Chen, Y.H. Liu, J.W. Zhang, T. Zhang, G.C. Wang, J.F. Zhou, J Alloys Compd 672, 277 (2016)

    Article  Google Scholar 

  39. X.J. Cheng, J.G. Wu, X.P. Wang, B.Y. Zhang, J.G. Zhu, D.Q. Xiao, X.J. Wang, X.J. Lou, W.F. Liang, J Appl Phys 114, 124107 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Project of Southwest University (No. 2016JY001 and XDJK2014C111), “121” Key Engineering Project of Chongqing Municipality (No. cstc2014fazktjcsf50015), and Science & Technology Projects of Chongqing Municipality (No. cstc2012ggys0001, cstc2014jcyjys0001, and cstc2015jcyjys0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Xue, D., Wang, P. et al. Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: Structure and piezoelectric properties. J Electroceram 40, 36–41 (2018). https://doi.org/10.1007/s10832-017-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0089-7

Keywords

Navigation