Skip to main content

Advertisement

Log in

Multi-dimensional carbon nanofibers for supercapacitor electrodes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Four different types of porous carbon nanofibers (CNFs), plain, hollow, multi-channel (MC), and hollowed MC, were fabricated using coaxial electrospinning and thermal treatment for supercapacitor electrodes. The influence of the porosity on the specific surface area (SSA), pore volumes, and electrochemical propoerties of porous CNFs were investigated. The comparisons of their properties are a valuable work with same methods, becuase electrochemical performances are depending on the measurement conditions. Among them, the hollowed MC CNF structure was indicated the highest SSA and pore volumes. In addition, their hybrid structures with multi-walled carbon nanotubes (MWCNTs) were analyzed in therms of their porosity, SSA, and electrochemical properties for supercapacitors (specific capacitance and long-term cycling). These hybrid structures can improve overall porosity and electrochemical propoerties due to the extra mesoporous structures formed by entangling MWCNTs. In conclusion, these porous CNFs have a promising potential for various fields which need high porosity and SSA, and can be used as the platforms for catalysts, sensors, or energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  2. J.R.B. Miller, A.F. Burke, Electrochem. Soc. Interface 17, 53 (2008)

    Google Scholar 

  3. J.R.B. Miller, P. Simon, Science 321, 651 (2008)

    Article  Google Scholar 

  4. A.F. Burke, J. Power Sources 91, 37 (2000)

    Article  Google Scholar 

  5. K.M. Kim, M. Latifatu, Y.-G. Lee, J.M. Ko, J.H. Kim, W.I. Cho, J. Electrocerm. 32, 146 (2014)

    Article  Google Scholar 

  6. S. Kim, J.-H. Choi, D.-S. Lim, J.-H. Lee, I.-D. Kim, J. Electrocerm. 32, 261 (2014)

    Article  Google Scholar 

  7. S. Yu, J. Kim, K.R. Yoon, J.-W. Jung, J. Oh, I.-D. Kim, ACS Appl. Mater. Interfaces 7, 28116 (2015)

    Article  Google Scholar 

  8. D.T. Ngo, H.T.T. Le, C. Kim, J.Y. Lee, J.G. Fisher, I.-D. Kim, C.J. Park, Energy Environ. Sci. 8, 3577 (2015)

    Article  Google Scholar 

  9. S.J. Choi, F. Fuchs, R. Demadrille, B. Grevin, B.H. Jang, S.J. Lee, H. Tuller, I.-D. Kim, ACS Appl. Mater. Interfaces 6, 9061 (2014)

    Article  Google Scholar 

  10. J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073 (2006)

    Article  Google Scholar 

  11. C. Kim, S. Choi, S. Yoo, D. Kwon, S. Ko, J.-M. Kim, S.-Y. Lee, I.-D. Kim, S. Park, Nanoscale 252, 30 (2014)

    Google Scholar 

  12. J.H. Choi, C.L. Lee, K.S. Park, S.M. Jo, D.S. Lim, I.-D. Kim, RSC Adv. 4, 16062 (2014)

    Article  Google Scholar 

  13. X. Yu, B. Lu, Z. Xu, Adv. Mater. 26, 1044 (2014)

    Article  Google Scholar 

  14. Q. Zhang, C. Xu, B. Lu, Electrochim. Acta 132, 180 (2014)

    Article  Google Scholar 

  15. Q. Zhang, Z. Xu, B. Lu, Energy Storage Mater. 4, 84 (2016)

    Article  Google Scholar 

  16. K. Balasubramanian, M. Burghard, Small 1, 180 (2005)

    Article  Google Scholar 

  17. Z.Y. Wu, C. Li, H.W. Liang, J.F. Chen, S.H. Yu, Angew. Chem. Int. Ed. 52, 2925 (2013)

    Article  Google Scholar 

  18. C. Kim, Y.I. Jeong, B.T. Ngoc, K.S. Yang, M. Kojima, Y.A. Kim, M. Endo, J.W. Lee, Small 3, 91 (2007)

    Article  Google Scholar 

  19. B.-H. Kim, K.S. Yang, Y.A. Kim, Y.J. Kim, B. An, K. Oshida, J. Power Sources 196, 10496 (2011)

    Article  Google Scholar 

  20. T. Maiyalagan, K. Scott, J. Power Sources 195, 5246 (2010)

    Article  Google Scholar 

  21. J. Miao, M. Miyauchi, T.J. Simmons, J.S. Dordick, R.J. Linhardt, J. Nanosci. Nanotechnol. 10, 5507 (2010)

    Article  Google Scholar 

  22. B.-J. Kim, Y.-S. Lee, S.-J. Park, Int. J. Hydrog. Energy 33, 4112 (2008)

    Article  Google Scholar 

  23. M. Wu, Q. Wang, X. Liu, H. Liu, Carbon 51, 335 (2013)

    Article  Google Scholar 

  24. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670 (2007)

    Article  Google Scholar 

  25. D. Li, Y. Xia, Adv. Mater. 16, 1151 (2004)

    Article  Google Scholar 

  26. D. H. Reneker, I. Chun, 7, 216 (1996)

  27. D. Hulicœovμ, K. Hosoi, S. Kuroda, H. Abe, A. Oya, Adv. Mater. 14, 452 (2002)

    Article  Google Scholar 

  28. E. Zussman, A.L. Yarin, A.V. Bazilevsky, R. Avrahami, M. Feldman, Adv. Mater. 18, 348 (2006)

    Article  Google Scholar 

  29. X. Huang, Materials 2, 2369 (2009)

    Article  Google Scholar 

  30. M. Wu, Q. Wang, K. Li, Y. Wu, H. Liu, Polym. Degrad. Stab. 97, 1511 (2012)

    Article  Google Scholar 

  31. A. Yu, I. Roes, A. Davies, Z. Chen, Appl. Phys. Lett. 96, 253105 (2010)

    Article  Google Scholar 

  32. H.N. Tien, N.T.M. Hien, E.-S. Oh, J. Chung, E.J. Kim, W.M. Choi, B.-S. Kong, S.H. Hur, J. Mater. Chem. A 1, 208 (2013)

    Article  Google Scholar 

  33. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, ICT & Future Planning and the Ministry of Trade, Industry and Energy (MOTIE) of Korea through the National Research Foundation (2016R1A2B3013592 and 2016R1A5A1009926), the Technology Innovation Program (Grant 10044410), the Nano Material Technology Development Program (2015M3A7B4050308 and 2016M3A7B4910635), the Convergence Technology Development Program for Bionic Arm (NRF-2014M3C1B2048198), the Pioneer Research Center Program (NRF-2014M3C1A3001208), the Human Resource Training Program for Regional Innovation and Creativity (NRF-2014H1C1A1073051). Also, the authors thank financial support by Agency for Defense Development as a collaborative preliminary core technology research project and the Development Program of Manufacturing Technology for Flexible Electronics with High Performance (SC0970) funded by the Korea Institute of Machinery and Materials, and by the Development Program of Internet of Nature System (1.150090.01) funded by UNIST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Hyun Hur or Jang-Ung Park.

Electronic supplementary material

Electronic Supplementary Material contains details of experimental methods, characterization techniques, Fig. S1~S5 and Table S1.

ESM 1

(DOCX 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, B.G., Son, H.J., Ji, S. et al. Multi-dimensional carbon nanofibers for supercapacitor electrodes. J Electroceram 38, 43–50 (2017). https://doi.org/10.1007/s10832-016-0055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-016-0055-9

Keywords

Navigation