Skip to main content
Log in

Studies on room temperature multiferroic properties of xBi0.5Na0.5TiO3-(1-x)NiFe2O4 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Multiferroic ceramics xBi0.5Na0.5TiO3-(1-x)NiFe2O4 (x = 0–1) have been prepared by a sol–gel method. Crystal structures were investigated by X-ray diffraction. The results show the samples are pure phases and increasing Bi0.5Na0.5TiO3 content induces a gradual phase transformation from spinel to perovskite structure. Scanning electron microscopy micrographs also present the size and structure of the samples. Results from energy dispersive spectrometer confirm the stoichiometry of the compound. Both of the data are proved to agree with the results of X-ray diffraction. All of the samples display the evident ferromagnetic properties at 300 K and the saturation magnetization almost linearly varies with the increasing of x. The room temperature polarization-electric field loops were examined. Compared with pure NiFe2O4, superior ferroelectric properties are obtained with increasing maximum of polarization as the content of Bi0.5Na0.5TiO3 increases. Dielectric properties were also studied. The dielectric constant is proved to increase as Bi0.5Na0.5TiO3 content increases at room temperature and the dielectric loss decreases as Bi0.5Na0.5TiO3 doped in NiFe2O4. In addition, some of samples exhibit the effect of magnetoelectric coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Fiebig, J. Phys. D. Appl. Phys. 38, R123 (2005)

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  3. W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203 (2005)

    Article  Google Scholar 

  4. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  Google Scholar 

  5. N.G. Wang, J. Cheng, A. Pyatakov, A.K. Zvezdin, J.F. Li, L.E. Cross, D. Viehland, Phys. Rev. B 72, 104434 (2005)

    Article  Google Scholar 

  6. M. Rawat, K.L. Yadav, Ceram. Int. 39, 3627 (2013)

    Article  Google Scholar 

  7. Y. Yuan, C.J. Zhao, X.H. Zhou, B. Tang, S.R. Zhang, J. Electroceram. 25, 212 (2010)

    Article  Google Scholar 

  8. A. Ahlawat, V.G. Sathe, V. Ganesan, D.M. Phase, S. Satapathy, J. Appl. Phys. 111, 074302 (2012)

    Article  Google Scholar 

  9. J.S. Kim, K.H. Lee, C.I. Cheon, J. Electroceram. 22, 233 (2009)

    Article  Google Scholar 

  10. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, J. Magn. Magn. Mater. 257, 377 (2003)

    Article  Google Scholar 

  11. F.L. Zabotto, A.J. Gualdi, J.A. Eiras, A.J.A. Oliveira, D. Garcia, Mat. Res. 15, 428 (2012)

    Article  Google Scholar 

  12. Z.M. Tian, S.L. Yuan, X.L. Wang, X.F. Zheng, S.Y. Yin, C.H. Wang, L. Liu, J. Appl. Phys. 106, 103912 (2009)

    Article  Google Scholar 

  13. A. Thanaboonsombut, N. Vaneesorn, J. Electroceram. 21, 414 (2008)

    Article  Google Scholar 

  14. D.Q. Xiao, D.M. Lin, J.G. Zhu, P. Yu, J. Electroceram. 16, 271 (2006)

    Article  Google Scholar 

  15. V.G. Harris, IEEE Trans. Magn. 48, 1075 (2012)

    Article  Google Scholar 

  16. T. Kanai, S.I. Ohkoshi, A. Nakajima, T. Watanabe, K. Hashimoto, Adv. Mater. 13, 487 (2001)

    Article  Google Scholar 

  17. H.F. Zhang, P.Y. Du, Solid State Commun. 149, 101 (2009)

    Article  Google Scholar 

  18. Y.Q. Liu, Y.H. Wu, D. Li, Y.J. Zhang, J. Zhang, J.H. Yang, J. Mater. Sci. Mater. Electron. 24, 1900 (2013)

    Article  Google Scholar 

  19. V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20, 5061 (2008)

    Article  Google Scholar 

  20. D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, Y.D. Kolekar, B.K. Chougule, J. Phys. Chem. Solid 68, 1522 (2007)

    Article  Google Scholar 

  21. V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)

    Article  Google Scholar 

  22. C.C. Wang, M.N. Zhang, W. Xia, J. Am. Ceram. Soc. 96, 1521 (2013)

    Article  Google Scholar 

  23. S.K. Choi, B.S. Kang, Y.W. Cho, Y.M. Vysochanskii, J. Electroceram. 13, 493 (2004)

    Article  Google Scholar 

  24. Z. Yu, C. Ang, E. Furman, L.E. Cross, Appl. Phys. Lett. 82, 790 (2003)

    Article  Google Scholar 

  25. D. Viehland, J. Appl. Phys. 88, 4794 (2000)

    Article  Google Scholar 

  26. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11174092). We would like to thank the staffs of Analysis Center of HUST for their assistance in various measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songliu Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhu, C., Luo, H. et al. Studies on room temperature multiferroic properties of xBi0.5Na0.5TiO3-(1-x)NiFe2O4 ceramics. J Electroceram 35, 59–67 (2015). https://doi.org/10.1007/s10832-015-9992-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-015-9992-y

Keywords

Navigation