Skip to main content
Log in

Effect of design parameters on thin film bulk acoustic resonator performance

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Film bulk acoustic resonators (FBARs) have received considerable attention for micro-electromechanical systems (MEMS) applications such as RF filters, resonators, and recently, bio-sensors. FBARs consisting of a piezoelectric thin film and an acoustic reflector for acoustic isolation from the surrounding medium are advantageous due to the intrinsic high sensitivity to mechanical, chemical, or electrical perturbation and compatibility with standard CMOS processing. In this work, we investigated the resonance characteristics of acoustic Bragg reflector-type FBARs by the model-based parametric analysis. The effect of various thicknesses and materials of electrodes and structural variation of acoustic Bragg reflectors on the key performance characteristics was studied to identify optimal design parameters for high performance FBAR devices. The key performance characteristics of FBARs include impedance characteristics, reflection coefficients, electro-mechanical coupling coefficients, and Q factors. These results not only offer new insights into design guidelines for high performance FBAR devices but also help better understanding of the fundamental physical phenomenon at resonances of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q.X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, R. Whatmore, IEEE Trans. Microw. Theory Tech. 49, 4 (2001)

    Article  Google Scholar 

  2. M. Hara, T. Yokoyama, T. Sakashita, S. Taniguchi, M. Iwaki, T. Nishihara, M. Ueda, Y. Satoh, Jpn. J. Appl. Phys. 49, 07HD13 (2010)

    Google Scholar 

  3. J. Berge, M. Norling, A. Vorobiev, S. Gevorgian, J. Appl. Phys. 130, 064508 (2008)

    Article  Google Scholar 

  4. X.L. He, L.G. Gancedo, P.C. Jin, J. Zhou, W.B. Wang, S.R. Dong, J.K. Luo, A.J. Flewitt, W.I. Milne, J. Micromech. Microeng. 22, 125005 (2012)

    Article  Google Scholar 

  5. Z. Yan, X.Y. Zhou, G.K.H. Pang, T. Zhang, W.L. Liu, J.G. Cheng, Z.T. Song, S.L. Feng, L.H. Lai, J.Z. Chen, Y. Wang, Appl. Phys. Lett. 90, 143503 (2007)

    Article  Google Scholar 

  6. X. Zhao, G.M. Ashley, L.G. Gancedo, H. Jin, J. Luo, A.J. Flewitt, J.R. Lu, Sensors Actuators B Chem. 163, 242 (2012)

    Article  Google Scholar 

  7. M. A. Dubois, MEMSWAVE 03 (2003)

  8. M. El Hassan, E. Kerherve, Y. Deval, K. Baraka, J.B. David, D. Belot, INTECH (2013). doi:10.5772/55131

    Google Scholar 

  9. D. Chen, J. Wang, Y. Xu, D. Li, Z. Li, H. Song, Appl. Surf. Sci. 256, 7638 (2010)

    Article  Google Scholar 

  10. R. Aigner, Sensors Updat. 12, 175 (2003)

    Article  Google Scholar 

  11. R. Aigner, SAW, BAW and the future of wireless. (EDN network, 2013), http://www.edn.com. Accessed 15 Sept 2013

  12. T. Pensala, VTT Publ. 756, 97 (2011)

    Google Scholar 

  13. D. Chen, J. Wang, D. Li, L. Zhang, Appl. Phys. A 100, 239 (2010)

    Article  Google Scholar 

  14. D. Chen, Y. Xu, J. Wang, L. Zhang, X. Wang, M. Liang, Vacuum 85, 302 (2010)

  15. S. Jose, R. J. E. Hueting, A. B. M. Jansman, Semicond. Adv. Futur. Electron. Sensors 558 (2008)

  16. S. Gevorgian, A. Tagantsev, A. Vorobiev, Tuneable Film Bulk Acoustic Wave Resonator (Springer, Dordrecht, 2013)

    Book  Google Scholar 

  17. B.A. Auld, Acoustic Fields and Waves in Solids, 2nd edn. (Krieger Publishing Company, Florida, 1990)

    Google Scholar 

  18. D. Popovici, F. Constantinescu, M. Maricaru, F.I. Hantila, M. Nitescu, A. Ghorghe, in Modelling and Simulation, ed. by G. Petrone, G. Cammarata (INTECH, Croatia, 2008), p. 471

    Google Scholar 

  19. W.E. Newell, Proc. IEEE 53, 575 (1965)

    Article  Google Scholar 

  20. H.Y. Kim, K.B. Kim, S.H. Cho, Y.I. Kim, Surf. Coat. Technol. 211, 143 (2012)

    Article  Google Scholar 

  21. G.D. Mansfeld, S.G. Alekseev, I.M. Kotelyanskii, Proc. IEEE Ultrason. Conf. 1, 963 (1998)

    Google Scholar 

  22. J.F. Rosenbaum, Bulk Acoustic Wave Theory and Devices (Artech House Inc., Massachusetts, 1988), p. 455

    Google Scholar 

  23. G. Carlotti, D. Fioretto, G. Socino, E. Verona, J. Phys. Condens. Matter 7, 48 (1995)

    Article  Google Scholar 

  24. J.V. Tirado, P.P. Sanchez, O.M. Nadal, Bulk Acoustic Wave Resonators and their Application to Microwave Devices (UAB, Barcelona, 2010). pp. 7–14

    Google Scholar 

  25. ONDA Corporation, Table of Acoustic properties of materials - solids: gold (Au) material constant, Update 4/2003 (2002). http://www.ondacorp.com. Accessed 5 Nov 2013

Download references

Acknowledgments

This research was supported by the Technology Innovation Program (20131010501810) by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, N.K., Kim, K.B., Kim, Y.I. et al. Effect of design parameters on thin film bulk acoustic resonator performance. J Electroceram 33, 17–24 (2014). https://doi.org/10.1007/s10832-014-9896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9896-2

Keywords

Navigation