Skip to main content
Log in

Copper Compatible Barium Titanate Thin Films for Embedded Passives

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Barium titanate thin films have been prepared by chemical solution deposition on 18 μ m thick, industry standard copper foils in the absence of chemical barrier layers. The final embodiment exhibits randomly oriented BaTiO3 grains with diameters between 0.1 and 0.3 μ m, and an equiaxed morphology. The average film thickness is 0.6 μ m and the microstructure is free from secondary or interfacial phases. The BaTiO3 films are sintered in a high temperature reductive atmosphere such that copper oxidation is avoided. Subsequent lower-temperature, higher oxygen pressure anneals are used to minimize oxygen point defects. Permittivities of 2500 are observed at zero bias and room temperature, with permittivities greater than 3000 at the coercive field. Loss tangents under 1.5% are demonstrated at high fields. The BaTiO3 phase exhibits pronounced ferroelectric switching and coercive field values near 10 kV/cm. Temperature dependent measurements indicate a ferroelectric transition near 100C with very diffuse character. Combining the approaches of the multilayer capacitor industry with traditional solution processed thin films has allowed pure barium titanate to be integrated with copper. The high sintering temperature—as compared to typical film processing—provides for large grained films and properties consistent with well-prepared ceramics. Integrating BaTiO3 films on copper foil represents an important step towards high capacitance density embedded passive components and elimination of economic constraints imparted by traditional noble metallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Madou and L. Martens, IEEE Transactions on Electromagnetic Compatability, 43(4), 549 (2001).

    Google Scholar 

  2. L.-S. Chen, S.-L. Fu, and K.-D. Huang, Jpn. J. Appl. Phys., 37(2) No. 10B, L1241 (1998).

    Google Scholar 

  3. B. Lee and J. Zhang, Thin Solid Films, 338, 107 (2001).

    Google Scholar 

  4. H.-Y. Tian, W.-G. Luo, X.-H. Pu, and A.-L. Ding, J. Matl. Sci. Letters, 19, 1211 (2000).

    Google Scholar 

  5. S. Hoffmann and R. Waser, J. Eur. Cer. Soc., 19, 1339 (1999).

    Google Scholar 

  6. N.V. Giridharan, R. Varatharajan, R. Jayavel, and P. Ramasamy, Mat. Chem. Phys., 65, 261 (2000).

    Google Scholar 

  7. J.-P. Maria, K. Cheek, S. Streiffer, S.-H. Kim, and A. Kingon, J. Amer. Cer. Soc., 84(10), 2436 (2001).

    Google Scholar 

  8. K. Saegusa, Jpn. J. Appl. Phys., 36(11) Part 1, 6888 (1997).

    Google Scholar 

  9. Q. Zou, H.E. Ruda, and B.G. Yacobi, Appl. Phys. Lett., 78(9), 1282 (2001).

    Google Scholar 

  10. J.T. Dawley and P.G. Clem, Appl. Phys. Lett., 81(16), 3028 (2002).

    Google Scholar 

  11. J.M. Herbert, Trans. Br. Cer. Soc., 62(8), 645 (1963).

    Google Scholar 

  12. J.M. Herbert, Proc. IEE, 112(7), 1474 (1965).

    Google Scholar 

  13. I. Burn and G.H. Maher, J. Mater. Sci. Eng., 10, 633 (1975).

    Google Scholar 

  14. J.T. Dawley, P.G. Clem, M.P. Siegal, D.R. Tallant, and D.L. Overmyer, J. Mater. Res., 17(8), 1900 (2002).

    Google Scholar 

  15. D.R. Gaskell, Introduction to the Thermodynamics of Materials (Taylor {&} Francis Books, Inc., New York, 2003), p. 359.

    Google Scholar 

  16. R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M. Van Stry, T.J. Headley, and N.A. Missert, J. Am. Ceram. Soc., 82(9), 2359 (1999).

    Google Scholar 

  17. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys., 58(4), 1619 (1985).

    Google Scholar 

  18. M.H. Frey, Z. Xu, P. Han, and D.A. Payne, Ferroelectrics, 206–207, 937 (1998).

    Google Scholar 

  19. C.B. Parker, J.-P. Maria, and A.I. Kingon, Appl. Phys. Lett., 81(2), 340 (2002).

    Google Scholar 

  20. M. Rekas, Solid State Ionics, 20, 55 (1986).

    Google Scholar 

  21. H.T. Langhammer, T. Müller, R. Böttcher, and H.-P. Abicht, Solid State Sciences, 5, 965 (2003).

    Google Scholar 

  22. B. Jaffe, W.R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press Limited, Marietta, OH, 1971), p. 159.

    Google Scholar 

  23. H.B. Sharma and A. Mansingh, J. Mat. Sci., 33, 4455 (1998).

    Google Scholar 

  24. T. Sakudo, J. Phys. Soc. Japan, 12, 1050 (1957).

    Google Scholar 

  25. A. Inoue, M. Iha, I. Matsuda, H. Uwe, and T. Sakudo, Jpn. J. Appl. Phys., 30(9B), 2388 (1991).

    Google Scholar 

  26. T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga, and H. Maiwa, Jpn. J. Appl. Phys., 32(1, 9B), 4092 (1993).

    Google Scholar 

  27. C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, J. Appl. Phys., 82(5), 2497 (1997).

    Google Scholar 

  28. C.-R. Cho, S.-I. Kwun, T.-W. Noh, and M.-S. Jang, Jpn. J. Appl. Phys., 36(1, 4A), 2196 (1997).

    Google Scholar 

  29. H.B. Sharma and A. Mansingh, J. Mat. Sci., 33, 4455 (1998).

    Google Scholar 

  30. S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon, J. Appl. Phys., 86(8), 4565 (1999).

    Google Scholar 

  31. J.-G. Cheng, X.-J. Meng, B. Li, S.-L. Guo, J.-H. Chu, M. Wang, H. Wang, and Z. Wang, Appl. Phys. Lett., 75(14), 2132 (1999).

    Google Scholar 

  32. J. Thongrueng, K. Nishio, Y. Watanabe, K. Nagata, and T. Tsuchiya, Pub. Cer. Soc. Jpn., 181–182, 85 (2000).

    Google Scholar 

  33. R. Thomas, V.K. Varadan, S. Komarneni, and D.C. Dube, J. Appl. Phys., 90(3), 1480 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Ihlefeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihlefeld, J., Laughlin, B., Hunt-Lowery, A. et al. Copper Compatible Barium Titanate Thin Films for Embedded Passives. J Electroceram 14, 95–102 (2005). https://doi.org/10.1007/s10832-005-0866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-0866-6

Keywords

Navigation