Skip to main content

Advertisement

Log in

Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Electrical stimulation of the pudendal nerve (PN) is a promising approach to restore continence and micturition following bladder dysfunction resulting from neurological disease or injury. Although the pudendo-vesical reflex and its physiological properties are well established, there is limited understanding of the specific neural mechanisms that mediate this reflex. We sought to develop a computational model of the spinal neural network that governs the reflex bladder response to PN stimulation. We implemented and validated a neural network architecture based on previous neuroanatomical and electrophysiological studies. Using synaptically-connected integrate and fire model neurons, we created a network model with realistic spiking behavior. The model produced expected sacral parasympathetic nucleus (SPN) neuron firing rates from prescribed neural inputs and predicted bladder activation and inhibition with different frequencies of pudendal afferent stimulation. In addition, the model matched experimental results from previous studies of temporal patterns of pudendal afferent stimulation and selective pharmacological blockade of inhibitory neurons. The frequency- and pattern-dependent effects of pudendal afferent stimulation were determined by changes in firing rate of spinal interneurons, suggesting that neural network interactions at the lumbosacral level can mediate the bladder response to different frequencies or temporal patterns of pudendal afferent stimulation. Further, the anatomical structure of excitatory and inhibitory interneurons in the network model was necessary and sufficient to reproduce the critical features of the pudendo-vesical reflex, and this model may prove useful to guide development of novel, more effective electrical stimulation techniques for bladder control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrams, P., Cardozo, L., Fall, M., Griffiths, D., Rosier, P., Ulmsten, U., van Kerrebroeck, P., Victor, A., & Wein, A. (2002). The standardisation of terminology of lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Neurourology and Urodynamics, 21(2), 167–178.

    Article  PubMed  Google Scholar 

  • Anderson, K. D. (2004). Targeting recovery: priorities of the spinal cord-injured population. Journal of Neurotrauma, 21(10), 1371–1383.

    Article  PubMed  Google Scholar 

  • Araki, I., & de Groat, W. C. (1997). Developmental synaptic depression underlying reorganization of visceral reflex pathways in the spinal cord. The Journal of Neuroscience, 17(21), 8402–8407.

    CAS  PubMed  Google Scholar 

  • Bastiaanssen, E. H., van Leeuwen, J. L., Vanderschoot, J., & Redert, P. A. (1996). A myocybernetic model of the lower urinary tract. Journal of Theoretical Biology, 178(2), 113–133.

    Article  CAS  PubMed  Google Scholar 

  • Blok, B. F. M., & Holstege, G. (2000). The pontine micturition center in rat receives direct lumbosacral input. An ultrastructural study. Neuroscience Letters, 282(1–2), 29–32.

    Article  CAS  PubMed  Google Scholar 

  • Blok, B. F. M., van Maarseveen, J. T. P. W., & Holstege, G. (1998). Electrical stimulation of the sacral dorsal gray commissure evokes relaxation of the external urethral sphincter in the cat. Neuroscience Letters, 249(1), 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Boggs, J. W., Wenzel, B. J., Gustafson, K. J., & Grill, W. M. (2006). Frequency-dependent selection of reflexes by pudendal afferents in the cat. Journal of Physiology, 577(1), 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns, T. M., Bhadra, N., & Gustafson, K. J. (2008). Variable patterned pudendal nerve stimuli improves reflex bladder activation. IEEE Transactions on Rehabilitation Engineering, 16(2), 140–148.

    Google Scholar 

  • de Groat, W. C. (1976). Mechanisms underlying recurrent inhibition in the sacral parasympathetic outflow to the urinary bladder. Journal of Physiology, 257(2), 503–513.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groat, W. C., & Ryall, R. W. (1968). Recurrent inhibition in sacral parasympathetic pathways to the bladder. The Journal of Physiology, 196(3), 579–591.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groat, W. C., & Ryall, R. W. (1969). Reflexes to sacral parasympathetic neurones concerned with micturition in the cat. Journal of Physiology, 200(1), 87–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groat, W. C., & Wickens, C. (2013). Organization of the neural switching circuitry underlying reflex micturition. Acta Physiologica, 207(1), 66–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groat, W. C., Booth, A. M., Milne, R. J., & Roppolo, J. R. (1982). Parasympathetic preganglionic neurons in the sacral spinal cord. Journal of the Autonomic Nervous System, 5(1), 23–43.

    Article  PubMed  Google Scholar 

  • de Groat, W. C., Araki, I., Vizzard, M. A., Yoshiyama, M., Yoshimura, N., Sugaya, K., Tai, C., & Roppolo, J. R. (1998). Developmental and injury induced plasticity in the micturition reflex pathway. Behavioural Brain Research, 92(2), 127–140.

    Article  PubMed  Google Scholar 

  • de Groat, W. C., Griffiths, D., & Yoshimura, N. (2015). Neural control of the lower urinary tract. Comparative Physiology, 5(1), 327–396.

    Google Scholar 

  • Fowler, C. J., Griffiths, D., & de Groat, W. C. (2008). The neural control of micturition. Nature Reviews Neuroscience, 9(6), 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill, W. M., Bhadra, N., & Wang, B. (1999). Bladder and urethral pressures evoked by microstimulation of the sacral spinal cord in cats. Brain Research, 836(1), 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Häbler, H. J., Jänig, W., & Koltzenburg, M. (1993). Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. The Journal of Physiology, 463(1), 449–460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashim, H., & Abrams, P. (2006). Is the bladder a reliable witness for predicting detrusor overactivity? Journal of Urology, 175(1), 191–194. discussion 194–195.

    Article  CAS  PubMed  Google Scholar 

  • Hosein, R. A., & Griffiths, D. J. (1990). Computer simulation of the neural control of bladder and urethra. Neurourology and Urodynamics, 9(6), 601–618.

    Article  Google Scholar 

  • Jilge, B., Minassian, K., Rattay, F., & Dimitrijevic, M. R. (2004). Frequency-dependent selection of alternative spinal pathways with common periodic sensory input. Biological Cybernetics, 91(6), 359–376.

    Article  PubMed  Google Scholar 

  • Ku, J. H. (2006). The management of neurogenic bladder and quality of life in spinal cord injury. BJU International, 98(4), 739–745.

    Article  PubMed  Google Scholar 

  • McGee, M. J., & Grill, W. M. (2013). Temporal patterns of pudendal afferent stimulation modulate reflex bladder activation. Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on.

  • McGee, M. J., & Grill, W. M. (2014). Selective co-stimulation of pudendal afferents enhances bladder activation and improves voiding efficiency. Neurourology and Urodynamics, 33(8), 1272–1278.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGee, M. J., & Grill, W. M. (2015). Temporal pattern of stimulation modulates reflex bladder activation by pudendal nerve stimulation. Neurourol Urodyn(In Review).

  • McGee, M. J., Danziger, Z. C., Bamford, J. A., & Grill, W. M. (2014). A spinal GABAergic mechanism is necessary for bladder inhibition by pudendal afferent stimulation. American Journal of Physiology. Renal Physiology, 307(8), F921–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez, A., Sawan, M., Minagawa, T., & Wyndaele, J. J. (2013). Estimation of bladder volume from afferent neural activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(5), 704–715.

    Article  PubMed  Google Scholar 

  • Nadelhaft, I., & Booth, A. M. (1984). The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. Journal of Comparative Neurology, 226(2), 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Nadelhaft, I., Roppolo, J., Morgan, C., & de Groat, W. C. (1983). Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. The Journal of Comparative Neurology, 216(1), 36–52.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C. W., Chen, J. J., Cheng, C. L., & Grill, W. M. (2008). Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents. Journal of Neural Engineering, 5(2), 144–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pikov, V., Bullara, L., & McCreery, D. B. (2007). Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury. Journal of Neural Engineering, 4(4), 356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roppolo, J. R., Nadelhaft, I., & De Groat, W. C. (1985). The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. The Journal of Comparative Neurology, 234(4), 475–488.

    Article  CAS  PubMed  Google Scholar 

  • Roth, A., & van Rossum, M. C. (2009). 6Modeling Synapses.

  • Sasaki, M. (1998). Bladder motility and efferent nerve activity during isotonic and isovolumic recording in the cat. Journal of Physiology, 510(Pt 1), 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, M., & Sato, H. (2013). Polysynaptic connections between Barrington’s nucleus and sacral preganglionic neurons. Neuroscience Research, 75(2), 150–156.

    Article  PubMed  Google Scholar 

  • Satchell, P., & Vaughan, C. (1989). Efferent pelvic nerve activity, ganglionic filtering, and the feline bladder. American Journal of Physiology, 256(6 Pt 2), R1269–1273.

    CAS  PubMed  Google Scholar 

  • Sengupta, J. N., & Gebhart, G. F. (1994). Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. Journal of Neurophysiology, 72(5), 2420–2430.

    CAS  PubMed  Google Scholar 

  • Shafik, A., Shafik, A. A., El-Sibai, O., & Ahmed, I. (2003). Role of positive urethrovesical feedback in vesical evacuation. The concept of a second micturition reflex: the urethrovesical reflex. World Journal of Urology, 21(3), 167–170.

    Article  PubMed  Google Scholar 

  • Shefchyk, S. J. (2001). Sacral spinal interneurones and the control of urinary bladder and urethral striated sphincter muscle function. The Journal of Physiology, 533(1), 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai, C., Smerin, S. E., de Groat, W. C., & Roppolo, J. R. (2006). Pudendal-to-bladder reflex in chronic spinal-cord-injured cats. Experimental Neurology, 197(1), 225–234.

    Article  PubMed  Google Scholar 

  • Thor, K. B., Morgan, C., Nadelhaft, I., Houston, M., & de Groat, W. C. (1989). Organization of afferent and efferent pathways in the pudendal nerve of the female cat. The Journal of Comparative Neurology, 288(2), 263–279.

    Article  CAS  PubMed  Google Scholar 

  • van Duin, F., Rosier, P. F., Bemelmans, B. L., Debruyne, F. M., & Wijkstra, H. (1999). A computer model for describing the effect of urethral afferents on simulated lower urinary tract function. Archives of Physiology and Biochemistry, 107(3), 223–235.

    Article  PubMed  Google Scholar 

  • Woock, J., Yoo, P., & Grill, W. (2008). Activation and inhibition of the micturition reflex by penile afferents in the cat. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 294(6), R1880–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woock, J. P., Yoo, P. B., & Grill, W. M. (2011). Mechanisms of reflex bladder activation by pudendal afferents. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 300(2), R398–R407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, Z., Rogers, M. J., Shen, B., Wang, J., Schwen, Z., Roppolo, J. R., de Groat, W. C., Tai, C. (2014). Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats. American Journal of Physiology - Renal Physiology.

  • Yoo, P. B., & Grill, W. M. (2007). Minimally-invasive electrical stimulation of the pudendal nerve: a pre-clinical study for neural control of the lower urinary tract. Neurourology and Urodynamics, 26(4), 562–569.

    Article  PubMed  Google Scholar 

  • Yoo, P., Klein, S., Grafstein, N., Horvath, E., Amundsen, C., Webster, G., & Grill, W. (2007). Pudendal nerve stimulation evokes reflex bladder contractions in persons with chronic spinal cord injury. Neurourology and Urodynamics, 26(7), 1020–1023.

    Article  PubMed  Google Scholar 

  • Yoo, P., Woock, J., & Grill, W. (2008). Bladder activation by selective stimulation of pudendal nerve afferents in the cat. Experimental Neurology, 212(1), 218–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo, P. B., Horvath, E. E., Amundsen, C. L., Webster, G. D., & Grill, W. M. (2011). Multiple pudendal sensory pathways reflexly modulate bladder and urethral activity in patients with spinal cord injury. The Journal of Urology, 185(2), 737–743.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by National Institutes of Health (NIH) R01 NS050514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Frances K. Skinner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGee, M.J., Grill, W.M. Modeling the spinal pudendo-vesical reflex for bladder control by pudendal afferent stimulation. J Comput Neurosci 40, 283–296 (2016). https://doi.org/10.1007/s10827-016-0597-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0597-5

Keywords

Navigation